Winter Contest 2025 Presentation of Solutions

The Winter Contest Jury February 6, 2025

Winter Contest 2025 Jury

Lucas Alber

Karlsruhe Institute of Technology

Felicia Lucke

Durham University UK, CPUIm

- Niyaz Nigmatullin JetBrains
- Jannik Olbrich

Ulm University, CPUIm

David Stangl
 MOIA GmbH

- Christopher Weyand
 MOIA GmbH, CPUIm
- Paul Wild

Friedrich-Alexander University Erlangen-Nürnberg, CPUIm

- Wendy Yi Karlsruhe Institute of Technology, CPUIm
- Michael Zündorf

Karlsruhe Institute of Technology, CPUIm

Winter Contest 2025 Test Solvers

Brutenis Gliwa

Planet AI GmbH, CPUIm

Andreas Grigorjew

University of Helsinki FI, CPUIm

Winter Contest 2025 Technical Team

- Nathan Maier
 CPUIm
- Alexander Schmid
 CPUIm

Pascal Weber

University of Vienna, CPUIm

Jan 25: Winter Contest

Problem author: Paul Wild

Problem author: Paul Wild

Problem

Given a range of years, find the number of dates falling into that range where each of year, month and day is a square number.

Problem author: Paul Wild

Problem

Given a range of years, find the number of dates falling into that range where each of year, month and day is a square number.

- Enumerating all dates in the range is kind of annoying but doable.
- We can make things easier for ourselves:
 - We only care about months 1, 4 and 9 and days 1, 4, 9, 16, 25.
 - So there are always 15 possible days for each square year.
- To find square years, loop over $45 \le x \le 99$ and check if x^2 is in the given range.

Jan 29: Chinese New Year

Problem author: Michael Zündorf

Problem

Given a planar graph G, decompose it into the minimal number of - not necessarily simple - paths.

Observation 1

- A single path only contains two odd degree vertices.
- \Rightarrow We need at least $\frac{\#oddvertices}{2}$ paths.

Observation 1

- A single path only contains two odd degree vertices.
- \Rightarrow We need at least $\frac{\#oddvertices}{2}$ paths.

Observation 2

• Even if there is no odd vertex, each component needs at least one path.

Observation 1

- A single path only contains two odd degree vertices.
- \Rightarrow We need at least $\frac{\#oddvertices}{2}$ paths.

Observation 2

• Even if there is no odd vertex, each component needs at least one path.

- Pair up the odd degree vertices in any way and add an edge.
- The resulting graph contains an euler tour.
- Split this tour along the added edges.

Problem author: Felicia Lucke

Given a graph G of radius 2, colour the vertices with two colours R and B such that every vertex is adjacent to at most one vertex of the other colour.

Given a graph G of radius 2, colour the vertices with two colours R and B such that every vertex is adjacent to at most one vertex of the other colour.

- Find v at distance at most 2 to every other vertex.
- Colour v blue.

Given a graph G of radius 2, colour the vertices with two colours R and B such that every vertex is adjacent to at most one vertex of the other colour.

- Find v at distance at most 2 to every other vertex.
- Colour *v* blue.
- At most one neighbour of *v* is red.
- Try all options to colour the neighbours of v.
- In the case where all are blue, try all options to colour one other vertex of *G* red.

Given a graph G of radius 2, colour the vertices with two colours R and B such that every vertex is adjacent to at most one vertex of the other colour.

- Find v at distance at most 2 to every other vertex.
- Colour v blue.
- At most one neighbour of *v* is red.
- Try all options to colour the neighbours of v.
- In the case where all are blue, try all options to colour one other vertex of *G* red.
- Propagate the colouring:
 - A vertex with two red (blue) neighbours has to be red (blue).
 - If a red (blue) vertex has a blue (red) neighbour, all other neighbours are red (blue).

Given a graph G of radius 2, colour the vertices with two colours R and B such that every vertex is adjacent to at most one vertex of the other colour.

- Find v at distance at most 2 to every other vertex.
- Colour v blue.
- At most one neighbour of *v* is red.
- Try all options to colour the neighbours of v.
- In the case where all are blue, try all options to colour one other vertex of *G* red.
- Propagate the colouring:
 - A vertex with two red (blue) neighbours has to be red (blue).
 - If a red (blue) vertex has a blue (red) neighbour, all other neighbours are red (blue).

Every uncoloured vertex has exactly one blue neighbour

Every uncoloured vertex has exactly one blue neighbour

Observation 2

Every connected component in the graph of uncoloured vertices is either fully red or fully blue.

Every uncoloured vertex has exactly one blue neighbour

Observation 2

Every connected component in the graph of uncoloured vertices is either fully red or fully blue.

Solve by 2-SAT

- One variable per uncoloured component indicates whether red or blue, say true means blue.
- Clause (x) if a blue vertex has two neighbours in the same component
- Clause (x ∨ y) for any two components with a common blue neighbour

Total runtime O(n * m)

Every uncoloured vertex has exactly one blue neighbour

Observation 2

Every connected component in the graph of uncoloured vertices is either fully red or fully blue.

Solve by 2-SAT

- One variable per uncoloured component indicates whether red or blue, say true means blue.
- Clause (x) if a blue vertex has two neighbours in the same component
- Clause (x ∨ y) for any two components with a common blue neighbour

Note

For every 2-SAT formula, we can construct a graph where solving this problem corresponds to checking satisfiability.

Total runtime O(n * m)

Problem author: Paul Wild

- A calculator encrypts the digits 0-9 using the letters a-j.
- You can interactively add numbers to the calculator's display value.
- Your queries also use the letters a-j, so you don't know which numbers you add.
- Figure out enough parts of the cipher to print the current display number in plaintext.

Insight

Even though you don't have to, it's easiest to figure out the complete cipher.

Insight

Even though you don't have to, it's easiest to figure out the complete cipher.

Solution 1 – Adding single digit numbers

- Cycle through the letters a-j and them add one by one.
- Track the last digit to find out which letter corresponds to 0.
- Track the second to last digit to find out the cyclic order of digits.
- After at most 30 queries you should know the full cipher.

Insight

Even though you don't have to, it's easiest to figure out the complete cipher.

Solution 1 – Adding single digit numbers

- Cycle through the letters a-j and them add one by one.
- Track the last digit to find out which letter corresponds to 0.
- Track the second to last digit to find out the cyclic order of digits.
- After at most 30 queries you should know the full cipher.

Solution 2 – Adding large numbers

- Add a few random large numbers and note down the results.
- Solve the *cryptarithm* puzzle by trying out all 10! permutations of a-j.
- Given enough numbers (5 is plenty), the puzzle has a unique solution.

Problem

Given two regular expressions α_1 and α_2 without nesting or Kleene-star, find a string in the languages' intersection (or determine that there is none)

 Build DAGs g₁ and g₂ representing all strings in the languages

Problem

Given two regular expressions α_1 and α_2 without nesting or Kleene-star, find a string in the languages' intersection (or determine that there is none)

- Build DAGs g₁ and g₂ representing all strings in the languages
- Use dynamic programming: Let D(i, j) indicate whether there is a common string starting at i in g₁ and j in g₂

 $(m)(Y \mid \epsilon)(c)(Ymc \mid c)(M \mid y)$

Problem

Given two regular expressions α_1 and α_2 without nesting or Kleene-star, find a string in the languages' intersection (or determine that there is none)

- Build DAGs g₁ and g₂ representing all strings in the languages
- Use dynamic programming: Let D(i, j) indicate whether there is a common string starting at i in g₁ and j in g₂
- Note that the average degree in the graphs is constant

 $(m)(Y \mid \epsilon)(c)(Ymc \mid c)(M \mid y)$

Problem

Given two regular expressions α_1 and α_2 without nesting or Kleene-star, find a string in the languages' intersection (or determine that there is none)

- Build DAGs g₁ and g₂ representing all strings in the languages
- Use dynamic programming: Let D(i, j) indicate whether there is a common string starting at i in g₁ and j in g₂
- Note that the average degree in the graphs is constant
- Therefore, the time complexity is O(N · M), where N and M are the number of nodes in the DAGs

 $(m)(Y \mid \epsilon)(c)(Ymc \mid c)(M \mid y)$

Problem author: David Stangl

You are given a route consisting of n stops in a fixed order, each with a travel time d from the previous stop and a time window [s, e] during which you have to visit it. Additionally, there are m constraints indicating that the time between visiting stop a and stop b must be at most l. Find valid times to visit the stops, or determine that it is impossible.

You are given a route consisting of n stops in a fixed order, each with a travel time d from the previous stop and a time window [s, e] during which you have to visit it. Additionally, there are m constraints indicating that the time between visiting stop a and stop b must be at most l. Find valid times to visit the stops, or determine that it is impossible.

Solution

• Start with the solution that visits every stop as early as possible.

You are given a route consisting of n stops in a fixed order, each with a travel time d from the previous stop and a time window [s, e] during which you have to visit it. Additionally, there are m constraints indicating that the time between visiting stop a and stop b must be at most l. Find valid times to visit the stops, or determine that it is impossible.

- Start with the solution that visits every stop as early as possible.
- For each stop from 1 to *n*, select a fixed time by delaying it as much as possible while keeping within the time windows of it and later stops.
You are given a route consisting of n stops in a fixed order, each with a travel time d from the previous stop and a time window [s, e] during which you have to visit it. Additionally, there are m constraints indicating that the time between visiting stop a and stop b must be at most l. Find valid times to visit the stops, or determine that it is impossible.

- Start with the solution that visits every stop as early as possible.
- For each stop from 1 to *n*, select a fixed time by delaying it as much as possible while keeping within the time windows of it and later stops.
- After fixing the time for a stop *a*, all constraints that limit the time taken between *a* and a later stop *b* can be translated into adjustments of the time window of *b*.

You are given a route consisting of n stops in a fixed order, each with a travel time d from the previous stop and a time window [s, e] during which you have to visit it. Additionally, there are m constraints indicating that the time between visiting stop a and stop b must be at most l. Find valid times to visit the stops, or determine that it is impossible.

- Start with the solution that visits every stop as early as possible.
- For each stop from 1 to *n*, select a fixed time by delaying it as much as possible while keeping within the time windows of it and later stops.
- After fixing the time for a stop *a*, all constraints that limit the time taken between *a* and a later stop *b* can be translated into adjustments of the time window of *b*.
- If any time ends up outside the stops time window then there is no solution.

You are given a route consisting of n stops in a fixed order, each with a travel time d from the previous stop and a time window [s, e] during which you have to visit it. Additionally, there are m constraints indicating that the time between visiting stop a and stop b must be at most l. Find valid times to visit the stops, or determine that it is impossible.

Implementation in $O((n+m)\log n)$

For each stop, keep the maximum total delay before reaching it in a data structure (segment tree, std::set, etc.).

You are given a route consisting of n stops in a fixed order, each with a travel time d from the previous stop and a time window [s, e] during which you have to visit it. Additionally, there are m constraints indicating that the time between visiting stop a and stop b must be at most l. Find valid times to visit the stops, or determine that it is impossible.

- For each stop, keep the maximum total delay before reaching it in a data structure (segment tree, std::set, etc.).
- When fixing a stop a

You are given a route consisting of n stops in a fixed order, each with a travel time d from the previous stop and a time window [s, e] during which you have to visit it. Additionally, there are m constraints indicating that the time between visiting stop a and stop b must be at most l. Find valid times to visit the stops, or determine that it is impossible.

- For each stop, keep the maximum total delay before reaching it in a data structure (segment tree, std::set, etc.).
- When fixing a stop a
 - Select the minimum total delay from the data structure to determine how much to delay visiting a.

You are given a route consisting of n stops in a fixed order, each with a travel time d from the previous stop and a time window [s, e] during which you have to visit it. Additionally, there are m constraints indicating that the time between visiting stop a and stop b must be at most l. Find valid times to visit the stops, or determine that it is impossible.

- For each stop, keep the maximum total delay before reaching it in a data structure (segment tree, std::set, etc.).
- When fixing a stop a
 - Select the minimum total delay from the data structure to determine how much to delay visiting a.
 - Remove the entry for *a* from the data structure.

You are given a route consisting of n stops in a fixed order, each with a travel time d from the previous stop and a time window [s, e] during which you have to visit it. Additionally, there are m constraints indicating that the time between visiting stop a and stop b must be at most l. Find valid times to visit the stops, or determine that it is impossible.

- For each stop, keep the maximum total delay before reaching it in a data structure (segment tree, std::set, etc.).
- When fixing a stop a
 - Select the minimum total delay from the data structure to determine how much to delay visiting a.
 - Remove the entry for *a* from the data structure.
- When incorporating constraints into time windows of stops, update the stops entries in the data structure accordingly.

You are given a route consisting of n stops in a fixed order, each with a travel time d from the previous stop and a time window [s, e] during which you have to visit it. Additionally, there are m constraints indicating that the time between visiting stop a and stop b must be at most l. Find valid times to visit the stops, or determine that it is impossible.

Alternative Solution

The problem can also be translated into a shortest path problem solvable with Dijkstra's algorithm. Due to the nature of the graph it can even be solved in O(n + m).

Jul 5: Dependence Day

Problem author: Christopher Weyand

Problem

Given *n* intervals that represent table reservations and *m* intervals that represent waiter shifts. At each point in time, when there are *a* active reservations and *b* active shifts, then each of those *b* waiters is responsible for at most $\lceil a/b \rceil$ tables. For each shift, output the maximum number of tables that the waiter is responsible for at some point in time during their shift.

Problem

Given *n* intervals that represent table reservations and *m* intervals that represent waiter shifts. At each point in time, when there are *a* active reservations and *b* active shifts, then each of those *b* waiters is responsible for at most $\lceil a/b \rceil$ tables. For each shift, output the maximum number of tables that the waiter is responsible for at some point in time during their shift.

Solution 1

• Process times when a reservation or shift starts or ends in sorted order while maintaining the current number of active shifts and occupied tables.

Problem

Given *n* intervals that represent table reservations and *m* intervals that represent waiter shifts. At each point in time, when there are *a* active reservations and *b* active shifts, then each of those *b* waiters is responsible for at most $\lceil a/b \rceil$ tables. For each shift, output the maximum number of tables that the waiter is responsible for at some point in time during their shift.

- Process times when a reservation or shift starts or ends in sorted order while maintaining the current number of active shifts and occupied tables.
- Compute tables per waiter for each point in time. We call this *load*.

Problem

Given *n* intervals that represent table reservations and *m* intervals that represent waiter shifts. At each point in time, when there are *a* active reservations and *b* active shifts, then each of those *b* waiters is responsible for at most $\lceil a/b \rceil$ tables. For each shift, output the maximum number of tables that the waiter is responsible for at some point in time during their shift.

- Process times when a reservation or shift starts or ends in sorted order while maintaining the current number of active shifts and occupied tables.
- Compute tables per waiter for each point in time. We call this *load*.
- Maintain the previous loads in a stack (the most recent on top).

Problem

Given *n* intervals that represent table reservations and *m* intervals that represent waiter shifts. At each point in time, when there are *a* active reservations and *b* active shifts, then each of those *b* waiters is responsible for at most $\lceil a/b \rceil$ tables. For each shift, output the maximum number of tables that the waiter is responsible for at some point in time during their shift.

- Process times when a reservation or shift starts or ends in sorted order while maintaining the current number of active shifts and occupied tables.
- Compute tables per waiter for each point in time. We call this *load*.
- Maintain the previous loads in a stack (the most recent on top).
- Before the current load is pushed onto the stack, pop smaller loads from the top.

Problem

Given *n* intervals that represent table reservations and *m* intervals that represent waiter shifts. At each point in time, when there are *a* active reservations and *b* active shifts, then each of those *b* waiters is responsible for at most $\lceil a/b \rceil$ tables. For each shift, output the maximum number of tables that the waiter is responsible for at some point in time during their shift.

- Process times when a reservation or shift starts or ends in sorted order while maintaining the current number of active shifts and occupied tables.
- Compute tables per waiter for each point in time. We call this *load*.
- Maintain the previous loads in a stack (the most recent on top).
- Before the current load is pushed onto the stack, pop smaller loads from the top.
- Thus the stack will be ordered ascending by load (from top to bottom).

Problem

Given *n* intervals that represent table reservations and *m* intervals that represent waiter shifts. At each point in time, when there are *a* active reservations and *b* active shifts, then each of those *b* waiters is responsible for at most $\lceil a/b \rceil$ tables. For each shift, output the maximum number of tables that the waiter is responsible for at some point in time during their shift.

- Process times when a reservation or shift starts or ends in sorted order while maintaining the current number of active shifts and occupied tables.
- Compute tables per waiter for each point in time. We call this *load*.
- Maintain the previous loads in a stack (the most recent on top).
- Before the current load is pushed onto the stack, pop smaller loads from the top.
- Thus the stack will be ordered ascending by load (from top to bottom).
- If a shift ends, query the maximum load since the start of the shift via binary search on the stack.

Problem

Given *n* intervals that represent table reservations and *m* intervals that represent waiter shifts. At each point in time, when there are *a* active reservations and *b* active shifts, then each of those *b* waiters is responsible for at most $\lceil a/b \rceil$ tables. For each shift, output the maximum number of tables that the waiter is responsible for at some point in time during their shift.

- Process times when a reservation or shift starts or ends in sorted order while maintaining the current number of active shifts and occupied tables.
- Compute tables per waiter for each point in time. We call this *load*.
- Maintain the previous loads in a stack (the most recent on top).
- Before the current load is pushed onto the stack, pop smaller loads from the top.
- Thus the stack will be ordered ascending by load (from top to bottom).
- If a shift ends, query the maximum load since the start of the shift via binary search on the stack.
- Runtime $\mathcal{O}((n+m)\log(n+m))$.

Problem

Given *n* intervals that represent table reservations and *m* intervals that represent waiter shifts. At each point in time, when there are *a* active reservations and *b* active shifts, then each of those *b* waiters is responsible for at most $\lceil a/b \rceil$ tables. For each shift, output the maximum number of tables that the waiter is responsible for at some point in time during their shift.

Solution 2

Do coordinate compression on all time points.

Problem

Given *n* intervals that represent table reservations and *m* intervals that represent waiter shifts. At each point in time, when there are *a* active reservations and *b* active shifts, then each of those *b* waiters is responsible for at most $\lceil a/b \rceil$ tables. For each shift, output the maximum number of tables that the waiter is responsible for at some point in time during their shift.

- Do coordinate compression on all time points.
- Compute the load at each time like in Solution 1.

Problem

Given *n* intervals that represent table reservations and *m* intervals that represent waiter shifts. At each point in time, when there are *a* active reservations and *b* active shifts, then each of those *b* waiters is responsible for at most $\lceil a/b \rceil$ tables. For each shift, output the maximum number of tables that the waiter is responsible for at some point in time during their shift.

- Do coordinate compression on all time points.
- Compute the load at each time like in Solution 1.
- From the loads, build any data structure that supports fast range-maximum queries. E.g. Segment Tree or Sparse Table.

Problem

Given *n* intervals that represent table reservations and *m* intervals that represent waiter shifts. At each point in time, when there are *a* active reservations and *b* active shifts, then each of those *b* waiters is responsible for at most $\lceil a/b \rceil$ tables. For each shift, output the maximum number of tables that the waiter is responsible for at some point in time during their shift.

- Do coordinate compression on all time points.
- Compute the load at each time like in Solution 1.
- From the loads, build any data structure that supports fast range-maximum queries. E.g. Segment Tree or Sparse Table.
- Compute the result for each shift by querying the data structure.

Problem

Given *n* intervals that represent table reservations and *m* intervals that represent waiter shifts. At each point in time, when there are *a* active reservations and *b* active shifts, then each of those *b* waiters is responsible for at most $\lceil a/b \rceil$ tables. For each shift, output the maximum number of tables that the waiter is responsible for at some point in time during their shift.

- Do coordinate compression on all time points.
- Compute the load at each time like in Solution 1.
- From the loads, build any data structure that supports fast range-maximum queries. E.g. Segment Tree or Sparse Table.
- Compute the result for each shift by querying the data structure.
- Runtime $\mathcal{O}((n+m)\log(n+m))$.

Jul 25: Sysadmin Day

Problem author: Paul Wild

Problem author: Paul Wild

Problem

- Print an image consisting of pixels in up to eight colours using a CMYK printer.
- Toners are available in cyan, magenta, yellow and black.
- White, red, green and blue pixels can be achieved using subtractive colour mixing.
- Given the amount and per-pixel cost of each toner, minimize the total cost.

Problem author: Paul Wild

Problem

- Print an image consisting of pixels in up to eight colours using a CMYK printer.
- Toners are available in cyan, magenta, yellow and black.
- White, red, green and blue pixels can be achieved using subtractive colour mixing.
- Given the amount and per-pixel cost of each toner, minimize the total cost.

- Each colour except for black can be printed in a unique way.
- Print all of these in a first pass and record how much toner of each type is left.
- In a second pass, greedily choose the cheapest option for each black pixel.
- Running time: $\mathcal{O}(h \cdot w)$

Problem author: Jannik Olbrich

Problem author: Jannik Olbrich

Problem

Given a Graph, map each vertex to a line such that two lines intersect iff the corresponding vertices are neighbours

Solution

• Two lines intersect iff they are not parallel

Problem author: Jannik Olbrich

Problem

Given a Graph, map each vertex to a line such that two lines intersect iff the corresponding vertices are neighbours

- Two lines intersect iff they are not parallel
- The line of a vertex v must be parallel to the line of every u that is not a neighbour of v

Problem author: Jannik Olbrich

Problem

Given a Graph, map each vertex to a line such that two lines intersect iff the corresponding vertices are neighbours

- Two lines intersect iff they are not parallel
- The line of a vertex v must be parallel to the line of every u that is not a neighbour of v
- This is possible iff the complement of the graph is a disjoint union of cliques

Problem author: Jannik Olbrich

Problem

Given a Graph, map each vertex to a line such that two lines intersect iff the corresponding vertices are neighbours

- Two lines intersect iff they are not parallel
- The line of a vertex v must be parallel to the line of every u that is not a neighbour of v
- This is possible iff the complement of the graph is a disjoint union of cliques
- But the complement graph has way too many edges...

Problem author: Jannik Olbrich

Problem

Given a Graph, map each vertex to a line such that two lines intersect iff the corresponding vertices are neighbours

- Two lines intersect iff they are not parallel
- The line of a vertex v must be parallel to the line of every u that is not a neighbour of v
- This is possible iff the complement of the graph is a disjoint union of cliques
- But the complement graph has way too many edges...
- Use a DSU data structure to maintain the cliques: Loop over the vertices that are the representative element of their set, and union each with all sets that are not adjacent to this vertex.

Problem author: Jannik Olbrich

Problem

Given a Graph, map each vertex to a line such that two lines intersect iff the corresponding vertices are neighbours

- Two lines intersect iff they are not parallel
- The line of a vertex v must be parallel to the line of every u that is not a neighbour of v
- This is possible iff the complement of the graph is a disjoint union of cliques
- But the complement graph has way too many edges...
- Use a DSU data structure to maintain the cliques: Loop over the vertices that are the representative element of their set, and union each with all sets that are not adjacent to this vertex.
- Now we just need to ensure that the set of edges exactly matches the set of edges between the DSU-sets

Problem author: Jannik Olbrich

Problem

Given a Graph, map each vertex to a line such that two lines intersect iff the corresponding vertices are neighbours

- Two lines intersect iff they are not parallel
- The line of a vertex v must be parallel to the line of every u that is not a neighbour of v
- This is possible iff the complement of the graph is a disjoint union of cliques
- But the complement graph has way too many edges...
- Use a DSU data structure to maintain the cliques: Loop over the vertices that are the representative element of their set, and union each with all sets that are not adjacent to this vertex.
- Now we just need to ensure that the set of edges exactly matches the set of edges between the DSU-sets
- Time complexity: $\mathcal{O}(n + m \log^* n)$

Nov 14: Domino Day

Problem author: Lucas Alber

Problem author: Lucas Alber

Problem

Given 2^n colors, compute a sequence of colors, such that all permutations of $[1, ..., 2^n]$ that are obtainable by swapping at inner nodes of an implicit binary tree are contained as subsequence.

Problem author: Lucas Alber

Problem

Given 2^n colors, compute a sequence of colors, such that all permutations of $[1, ..., 2^n]$ that are obtainable by swapping at inner nodes of an implicit binary tree are contained as subsequence.

Observation

- $n \Rightarrow n + 1$: The new colors never mix with the old colors using the described permutations.
- We can reuse the same solution and obtain a shortest sequence B for the new colors by adding 2ⁿ to the current sequence A.
- To allow for the colors to appear in any order, the resulting sequence has to have the form ABA.
Problem author: Lucas Alber

Problem

Given 2^n colors, compute a sequence of colors, such that all permutations of $[1, ..., 2^n]$ that are obtainable by swapping at inner nodes of an implicit binary tree are contained as subsequence.

Observation

- $n \Rightarrow n+1$: The new colors never mix with the old colors using the described permutations.
- We can reuse the same solution and obtain a shortest sequence B for the new colors by adding 2ⁿ to the current sequence A.
- To allow for the colors to appear in any order, the resulting sequence has to have the form ABA.

- Start with *i* = 0, *s* = [1].
- Obtain the next sequence as $s * (s + 2^i) * s$ and set i = i + 1.
- Repeat until i = n.

Nov 27: Thanksgiving

Problem author: Christopher Weyand

Problem

Given a graph with one outgoing edge per node. How many nodes are reachable from node 1?

Problem

Given a graph with one outgoing edge per node. How many nodes are reachable from node 1?

Solution

• Follow the edges starting from node 1.

Problem

Given a graph with one outgoing edge per node. How many nodes are reachable from node 1?

- Follow the edges starting from node 1.
- Mark all visited nodes.

Problem

Given a graph with one outgoing edge per node. How many nodes are reachable from node 1?

- Follow the edges starting from node 1.
- Mark all visited nodes.
- Stop once you encounter a node that is already marked (cycle).

Problem

Given a graph with one outgoing edge per node. How many nodes are reachable from node 1?

- Follow the edges starting from node 1.
- Mark all visited nodes.
- Stop once you encounter a node that is already marked (cycle).
- Count how many nodes are marked in the end.

Dec 1: Advent

Problem author: Wendy Yi

Problem

Given n chocolate pieces of k types, arrange them such that no two pieces of the same type are next to each other.

Problem

Given n chocolate pieces of k types, arrange them such that no two pieces of the same type are next to each other.

Observation

• This is impossible if there are more than $\lceil \frac{n}{2} \rceil$ pieces of the same type, otherwise possible.

Problem

Given n chocolate pieces of k types, arrange them such that no two pieces of the same type are next to each other.

Observation

• This is impossible if there are more than $\lceil \frac{n}{2} \rceil$ pieces of the same type, otherwise possible.

- Sort the types in decreasing order.
- Starting with the most common type, fill every other day with a piece.
- After reaching the end, repeat the process, starting with the second day.

Problem

Given n chocolate pieces of k types, arrange them such that no two pieces of the same type are next to each other.

Observation

• This is impossible if there are more than $\lceil \frac{n}{2} \rceil$ pieces of the same type, otherwise possible.

- Sort the types in decreasing order.
- Starting with the most common type, fill every other day with a piece.
- After reaching the end, repeat the process, starting with the second day.

Problem

Given n chocolate pieces of k types, arrange them such that no two pieces of the same type are next to each other.

Observation

• This is impossible if there are more than $\lceil \frac{n}{2} \rceil$ pieces of the same type, otherwise possible.

- Sort the types in decreasing order.
- Starting with the most common type, fill every other day with a piece.
- After reaching the end, repeat the process, starting with the second day.

2	2		

Problem

Given n chocolate pieces of k types, arrange them such that no two pieces of the same type are next to each other.

Observation

• This is impossible if there are more than $\lceil \frac{n}{2} \rceil$ pieces of the same type, otherwise possible.

- Sort the types in decreasing order.
- Starting with the most common type, fill every other day with a piece.
- After reaching the end, repeat the process, starting with the second day.

2	2	2	

Problem

Given n chocolate pieces of k types, arrange them such that no two pieces of the same type are next to each other.

Observation

• This is impossible if there are more than $\lceil \frac{n}{2} \rceil$ pieces of the same type, otherwise possible.

- Sort the types in decreasing order.
- Starting with the most common type, fill every other day with a piece.
- After reaching the end, repeat the process, starting with the second day.

2	2	2	1

Problem

Given n chocolate pieces of k types, arrange them such that no two pieces of the same type are next to each other.

Observation

• This is impossible if there are more than $\lceil \frac{n}{2} \rceil$ pieces of the same type, otherwise possible.

- Sort the types in decreasing order.
- Starting with the most common type, fill every other day with a piece.
- After reaching the end, repeat the process, starting with the second day.

2	1	2		2		1
---	---	---	--	---	--	---

Problem

Given n chocolate pieces of k types, arrange them such that no two pieces of the same type are next to each other.

Observation

• This is impossible if there are more than $\lceil \frac{n}{2} \rceil$ pieces of the same type, otherwise possible.

- Sort the types in decreasing order.
- Starting with the most common type, fill every other day with a piece.
- After reaching the end, repeat the process, starting with the second day.

2 1 2 3 2 1

Problem

Given n chocolate pieces of k types, arrange them such that no two pieces of the same type are next to each other.

Observation

• This is impossible if there are more than $\lceil \frac{n}{2} \rceil$ pieces of the same type, otherwise possible.

- Sort the types in decreasing order.
- Starting with the most common type, fill every other day with a piece.
- After reaching the end, repeat the process, starting with the second day.

Problem

Given n chocolate pieces of k types, arrange them such that no two pieces of the same type are next to each other.

Observation

• This is impossible if there are more than $\lceil \frac{n}{2} \rceil$ pieces of the same type, otherwise possible.

Solution

- Sort the types in decreasing order.
- Starting with the most common type, fill every other day with a piece.
- After reaching the end, repeat the process, starting with the second day.

Running time: $O(n \log(n))$

Problem

Given n chocolate pieces of k types, arrange them such that no two pieces of the same type are next to each other.

Observation

• This is impossible if there are more than $\lceil \frac{n}{2} \rceil$ pieces of the same type, otherwise possible.

Alternative solution

- Fill each day with a piece of currently most common type that is allowed to use (i.e, not used yesterday).
- Keep track of number of pieces per type and current maximum using a priority queue.
- Running time: O(n log(n))

Dec 31: New Year's Eve

Problem author: Christopher Weyand

Problem

You are planning *n* trips that each cost 100 Euro. Bahncard X gives X% discount on all trips. You can buy Bahncard 25, 50, or 100 for a, b, c Euro, respectively. Should you buy a Bahncard, and if so, which one?

Problem

You are planning *n* trips that each cost 100 Euro. Bahncard X gives X% discount on all trips. You can buy Bahncard 25, 50, or 100 for a, b, c Euro, respectively. Should you buy a Bahncard, and if so, which one?

Total Costs

• No Bahncard: 100n

Problem

You are planning *n* trips that each cost 100 Euro. Bahncard X gives X% discount on all trips. You can buy Bahncard 25, 50, or 100 for a, b, c Euro, respectively. Should you buy a Bahncard, and if so, which one?

- No Bahncard: 100n
- Bahncard 25: 75*n* + *a*

Problem

You are planning *n* trips that each cost 100 Euro. Bahncard X gives X% discount on all trips. You can buy Bahncard 25, 50, or 100 for a, b, c Euro, respectively. Should you buy a Bahncard, and if so, which one?

- No Bahncard: 100n
- Bahncard 25: 75*n* + *a*
- Bahncard 50: 50*n* + *b*

Problem

You are planning *n* trips that each cost 100 Euro. Bahncard X gives X% discount on all trips. You can buy Bahncard 25, 50, or 100 for a, b, c Euro, respectively. Should you buy a Bahncard, and if so, which one?

- No Bahncard: 100n
- Bahncard 25: 75*n* + *a*
- Bahncard 50: 50*n* + *b*
- Bahncard 100: c

Problem

You are planning *n* trips that each cost 100 Euro. Bahncard X gives X% discount on all trips. You can buy Bahncard 25, 50, or 100 for a, b, c Euro, respectively. Should you buy a Bahncard, and if so, which one?

- No Bahncard: 100n
- Bahncard 25: 75*n* + *a*
- Bahncard 50: 50*n* + *b*
- Bahncard 100: c

Problem

You are planning *n* trips that each cost 100 Euro. Bahncard X gives X% discount on all trips. You can buy Bahncard 25, 50, or 100 for a, b, c Euro, respectively. Should you buy a Bahncard, and if so, which one?

Total Costs

- No Bahncard: 100n
- Bahncard 25: 75*n* + *a*
- Bahncard 50: 50*n* + *b*
- Bahncard 100: c

Solution

Compute the cost for each option and print the cheapest.

Jury work

• 652 secret test cases (\approx 50 per problem)

Jury work

- 652 secret test cases (\approx 50 per problem)
- 119 jury solutions

Jury work

- 652 secret test cases (\approx 50 per problem)
- 119 jury solutions
- The minimum number of lines the jury needed to solve all problems is

1 + 41 + 110 + 14 + 48 + 39 + 37 + 6 + 13 + 2 + 2 + 5 + 2 = 320

On average 24.6 lines per problem

Jury work

- 652 secret test cases (\approx 50 per problem)
- 119 jury solutions
- The minimum number of lines the jury needed to solve all problems is

1 + 41 + 110 + 14 + 48 + 39 + 37 + 6 + 13 + 2 + 2 + 5 + 2 = 320

On average 24.6 lines per problem

- The minimum number of characters the jury needed to solve all problems is

102 + 1421 + 4397 + 336 + 1191 + 1259 + 929 + 431 + 692 + 119 + 124 + 207 + 166

On average 875 characters per problem