
Winter Contest 2025 Presentation of Solutions

The Winter Contest Jury
February 6, 2025

Winter Contest 2025 Jury

• Lucas Alber
Karlsruhe Institute of Technology

• Felicia Lucke
Durham University UK, CPUlm

• Niyaz Nigmatullin
JetBrains

• Jannik Olbrich
Ulm University, CPUlm

• David Stangl
MOIA GmbH

• Christopher Weyand
MOIA GmbH, CPUlm

• Paul Wild
Friedrich-Alexander University
Erlangen-Nürnberg, CPUlm

• Wendy Yi
Karlsruhe Institute of Technology, CPUlm

• Michael Zündorf
Karlsruhe Institute of Technology, CPUlm

Winter Contest 2025 Test Solvers

• Brutenis Gliwa
Planet AI GmbH, CPUlm

• Andreas Grigorjew
University of Helsinki FI, CPUlm

Winter Contest 2025 Technical Team

• Nathan Maier
CPUlm

• Alexander Schmid
CPUlm

• Pascal Weber
University of Vienna, CPUlm

Jan 25: Winter Contest
Problem author: Paul Wild

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40
correct

wrong-answer
timelimit
run-error
pending

Jan 25: Winter Contest
Problem author: Paul Wild

Problem
Given a range of years, find the number of dates falling into that range where each of year, month
and day is a square number.

Solution

• Enumerating all dates in the range is kind of annoying but doable.
• We can make things easier for ourselves:

• We only care about months 1, 4 and 9 and days 1, 4, 9, 16, 25.
• So there are always 15 possible days for each square year.

• To find square years, loop over 45 ≤ x ≤ 99 and check if x2 is in the given range.

Jan 25: Winter Contest
Problem author: Paul Wild

Problem
Given a range of years, find the number of dates falling into that range where each of year, month
and day is a square number.

Solution

• Enumerating all dates in the range is kind of annoying but doable.
• We can make things easier for ourselves:

• We only care about months 1, 4 and 9 and days 1, 4, 9, 16, 25.
• So there are always 15 possible days for each square year.

• To find square years, loop over 45 ≤ x ≤ 99 and check if x2 is in the given range.

Jan 29: Chinese New Year
Problem author: Michael Zündorf

0 50 100 150 200 250 300
0

2

4

6

8

10

12
correct

wrong-answer
timelimit
run-error
pending

Jan 29: Chinese New Year
Problem author: Michael Zündorf

Problem
Given a planar graph G , decompose it into the minimal
number of – not necessarily simple – paths.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

1

2

3

4 5

6

7 8

9

10 11

1213

14

15

16

Jan 29: Chinese New Year
Problem author: Michael Zündorf

Observation 1

• A single path only contains two odd degree vertices.
⇒ We need at least #oddvertices

2 paths.

Observation 2

• Even if there is no odd vertex, each component needs at least one path.

Solution

• Pair up the odd degree vertices in any way and add an edge.
• The resulting graph contains an euler tour.
• Split this tour along the added edges.

Jan 29: Chinese New Year
Problem author: Michael Zündorf

Observation 1

• A single path only contains two odd degree vertices.
⇒ We need at least #oddvertices

2 paths.

Observation 2

• Even if there is no odd vertex, each component needs at least one path.

Solution

• Pair up the odd degree vertices in any way and add an edge.
• The resulting graph contains an euler tour.
• Split this tour along the added edges.

Jan 29: Chinese New Year
Problem author: Michael Zündorf

Observation 1

• A single path only contains two odd degree vertices.
⇒ We need at least #oddvertices

2 paths.

Observation 2

• Even if there is no odd vertex, each component needs at least one path.

Solution

• Pair up the odd degree vertices in any way and add an edge.
• The resulting graph contains an euler tour.
• Split this tour along the added edges.

Mar 3: Carnival
Problem author: Felicia Lucke

0 50 100 150 200 250 300
0

5

10

15

20

25 correct
wrong-answer
timelimit
run-error
pending

Mar 3: Carnival
Problem author: Felicia Lucke

Problem
Given a graph G of radius 2, colour the vertices with two colours R and B such that every vertex is
adjacent to at most one vertex of the other colour.

Mar 3: Carnival
Problem author: Felicia Lucke

Problem
Given a graph G of radius 2, colour the vertices with two colours R and B such that every vertex is
adjacent to at most one vertex of the other colour.

Solution

• Find v at distance at most 2 to every other vertex.
• Colour v blue.

• At most one neighbour of v is red.
• Try all options to colour the neighbours of v .
• In the case where all are blue, try all options to colour

one other vertex of G red.
• Propagate the colouring:

• A vertex with two red (blue) neighbours has to be red
(blue).

• If a red (blue) vertex has a blue (red) neighbour, all
other neighbours are red (blue).

Mar 3: Carnival
Problem author: Felicia Lucke

Problem
Given a graph G of radius 2, colour the vertices with two colours R and B such that every vertex is
adjacent to at most one vertex of the other colour.

Solution

• Find v at distance at most 2 to every other vertex.
• Colour v blue.
• At most one neighbour of v is red.
• Try all options to colour the neighbours of v .
• In the case where all are blue, try all options to colour

one other vertex of G red.

• Propagate the colouring:
• A vertex with two red (blue) neighbours has to be red

(blue).
• If a red (blue) vertex has a blue (red) neighbour, all

other neighbours are red (blue).

Mar 3: Carnival
Problem author: Felicia Lucke

Problem
Given a graph G of radius 2, colour the vertices with two colours R and B such that every vertex is
adjacent to at most one vertex of the other colour.

Solution

• Find v at distance at most 2 to every other vertex.
• Colour v blue.
• At most one neighbour of v is red.
• Try all options to colour the neighbours of v .
• In the case where all are blue, try all options to colour

one other vertex of G red.
• Propagate the colouring:

• A vertex with two red (blue) neighbours has to be red
(blue).

• If a red (blue) vertex has a blue (red) neighbour, all
other neighbours are red (blue).

Mar 3: Carnival
Problem author: Felicia Lucke

Problem
Given a graph G of radius 2, colour the vertices with two colours R and B such that every vertex is
adjacent to at most one vertex of the other colour.

Solution

• Find v at distance at most 2 to every other vertex.
• Colour v blue.
• At most one neighbour of v is red.
• Try all options to colour the neighbours of v .
• In the case where all are blue, try all options to colour

one other vertex of G red.
• Propagate the colouring:

• A vertex with two red (blue) neighbours has to be red
(blue).

• If a red (blue) vertex has a blue (red) neighbour, all
other neighbours are red (blue).

Mar 3: Carnival
Problem author: Felicia Lucke

Observation 1
Every uncoloured vertex has exactly one blue neighbour

Observation 2
Every connected component in the graph of uncoloured
vertices is either fully red or fully blue.

Solve by 2-SAT

• One variable per uncoloured component indicates
whether red or blue, say true means blue.

• Clause (x) if a blue vertex has two neighbours in the
same component

• Clause (x ∨ y) for any two components with a common
blue neighbour

Total runtime O(n ∗ m)

Note
For every 2-SAT formula, we can
construct a graph where solving
this problem corresponds to
checking satisfiability.

Mar 3: Carnival
Problem author: Felicia Lucke

Observation 1
Every uncoloured vertex has exactly one blue neighbour

Observation 2
Every connected component in the graph of uncoloured
vertices is either fully red or fully blue.

Solve by 2-SAT

• One variable per uncoloured component indicates
whether red or blue, say true means blue.

• Clause (x) if a blue vertex has two neighbours in the
same component

• Clause (x ∨ y) for any two components with a common
blue neighbour

Total runtime O(n ∗ m)

Note
For every 2-SAT formula, we can
construct a graph where solving
this problem corresponds to
checking satisfiability.

Mar 3: Carnival
Problem author: Felicia Lucke

Observation 1
Every uncoloured vertex has exactly one blue neighbour

Observation 2
Every connected component in the graph of uncoloured
vertices is either fully red or fully blue.

Solve by 2-SAT

• One variable per uncoloured component indicates
whether red or blue, say true means blue.

• Clause (x) if a blue vertex has two neighbours in the
same component

• Clause (x ∨ y) for any two components with a common
blue neighbour

Total runtime O(n ∗ m)

Note
For every 2-SAT formula, we can
construct a graph where solving
this problem corresponds to
checking satisfiability.

Mar 3: Carnival
Problem author: Felicia Lucke

Observation 1
Every uncoloured vertex has exactly one blue neighbour

Observation 2
Every connected component in the graph of uncoloured
vertices is either fully red or fully blue.

Solve by 2-SAT

• One variable per uncoloured component indicates
whether red or blue, say true means blue.

• Clause (x) if a blue vertex has two neighbours in the
same component

• Clause (x ∨ y) for any two components with a common
blue neighbour

Total runtime O(n ∗ m)

Note
For every 2-SAT formula, we can
construct a graph where solving
this problem corresponds to
checking satisfiability.

Mar 14: Pi Day
Problem author: Paul Wild

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

20 correct
wrong-answer
timelimit
run-error
pending

Mar 14: Pi Day
Problem author: Paul Wild

Problem

• A calculator encrypts the digits 0-9 using the letters a-j.
• You can interactively add numbers to the calculator’s display value.
• Your queries also use the letters a-j, so you don’t know which numbers you add.
• Figure out enough parts of the cipher to print the current display number in plaintext.

Mar 14: Pi Day
Problem author: Paul Wild

Insight
Even though you don’t have to, it’s easiest to figure out the complete cipher.

Solution 1 – Adding single digit numbers

• Cycle through the letters a-j and them add one by one.
• Track the last digit to find out which letter corresponds to 0.
• Track the second to last digit to find out the cyclic order of digits.
• After at most 30 queries you should know the full cipher.

Solution 2 – Adding large numbers

• Add a few random large numbers and note down the results.
• Solve the cryptarithm puzzle by trying out all 10! permutations of a-j.
• Given enough numbers (5 is plenty), the puzzle has a unique solution.

Mar 14: Pi Day
Problem author: Paul Wild

Insight
Even though you don’t have to, it’s easiest to figure out the complete cipher.

Solution 1 – Adding single digit numbers

• Cycle through the letters a-j and them add one by one.
• Track the last digit to find out which letter corresponds to 0.
• Track the second to last digit to find out the cyclic order of digits.
• After at most 30 queries you should know the full cipher.

Solution 2 – Adding large numbers

• Add a few random large numbers and note down the results.
• Solve the cryptarithm puzzle by trying out all 10! permutations of a-j.
• Given enough numbers (5 is plenty), the puzzle has a unique solution.

Mar 14: Pi Day
Problem author: Paul Wild

Insight
Even though you don’t have to, it’s easiest to figure out the complete cipher.

Solution 1 – Adding single digit numbers

• Cycle through the letters a-j and them add one by one.
• Track the last digit to find out which letter corresponds to 0.
• Track the second to last digit to find out the cyclic order of digits.
• After at most 30 queries you should know the full cipher.

Solution 2 – Adding large numbers

• Add a few random large numbers and note down the results.
• Solve the cryptarithm puzzle by trying out all 10! permutations of a-j.
• Given enough numbers (5 is plenty), the puzzle has a unique solution.

Mar 21: Colour Day
Problem author: Jannik Olbrich

0 50 100 150 200 250 300
0

2

4

6

8

correct
wrong-answer
timelimit
run-error
pending

Mar 21: Colour Day
Problem author: Jannik Olbrich

Problem
Given two regular expressions α1 and α2 without nesting or Kleene-star, find a string in the
languages’ intersection (or determine that there is none)

• Build DAGs g1 and g2 representing all strings in the
languages

• Use dynamic programming: Let D(i , j) indicate whether
there is a common string starting at i in g1 and j in g2

• Note that the average degree in the graphs is constant
• Therefore, the time complexity is O(N · M), where N

and M are the number of nodes in the DAGs

(m)(Y | ϵ)(c)(Ymc | c)(M | y)

m

Y

ϵ

c
c

Y

m

c

yM

Mar 21: Colour Day
Problem author: Jannik Olbrich

Problem
Given two regular expressions α1 and α2 without nesting or Kleene-star, find a string in the
languages’ intersection (or determine that there is none)

• Build DAGs g1 and g2 representing all strings in the
languages

• Use dynamic programming: Let D(i , j) indicate whether
there is a common string starting at i in g1 and j in g2

• Note that the average degree in the graphs is constant
• Therefore, the time complexity is O(N · M), where N

and M are the number of nodes in the DAGs

(m)(Y | ϵ)(c)(Ymc | c)(M | y)

m

Y

ϵ

c
c

Y

m

c

yM

Mar 21: Colour Day
Problem author: Jannik Olbrich

Problem
Given two regular expressions α1 and α2 without nesting or Kleene-star, find a string in the
languages’ intersection (or determine that there is none)

• Build DAGs g1 and g2 representing all strings in the
languages

• Use dynamic programming: Let D(i , j) indicate whether
there is a common string starting at i in g1 and j in g2

• Note that the average degree in the graphs is constant

• Therefore, the time complexity is O(N · M), where N
and M are the number of nodes in the DAGs

(m)(Y | ϵ)(c)(Ymc | c)(M | y)

m

Y

ϵ

c
c

Y

m

c

yM

Mar 21: Colour Day
Problem author: Jannik Olbrich

Problem
Given two regular expressions α1 and α2 without nesting or Kleene-star, find a string in the
languages’ intersection (or determine that there is none)

• Build DAGs g1 and g2 representing all strings in the
languages

• Use dynamic programming: Let D(i , j) indicate whether
there is a common string starting at i in g1 and j in g2

• Note that the average degree in the graphs is constant
• Therefore, the time complexity is O(N · M), where N

and M are the number of nodes in the DAGs

(m)(Y | ϵ)(c)(Ymc | c)(M | y)

m

Y

ϵ

c
c

Y

m

c

yM

Apr 20: Easter
Problem author: David Stangl

0 50 100 150 200 250 300
0

1

2

3

4

5
correct

wrong-answer
timelimit
run-error
pending

Apr 20: Easter
Problem author: David Stangl

Problem
You are given a route consisting of n stops in a fixed order, each with a travel time d from the
previous stop and a time window [s, e] during which you have to visit it. Additionally, there are m
constraints indicating that the time between visiting stop a and stop b must be at most l . Find valid
times to visit the stops, or determine that it is impossible.

Solution

• Start with the solution that visits every stop as early as possible.
• For each stop from 1 to n, select a fixed time by delaying it as much as possible while keeping

within the time windows of it and later stops.
• After fixing the time for a stop a, all constraints that limit the time taken between a and a later

stop b can be translated into adjustments of the time window of b.
• If any time ends up outside the stops time window then there is no solution.

Apr 20: Easter
Problem author: David Stangl

Problem
You are given a route consisting of n stops in a fixed order, each with a travel time d from the
previous stop and a time window [s, e] during which you have to visit it. Additionally, there are m
constraints indicating that the time between visiting stop a and stop b must be at most l . Find valid
times to visit the stops, or determine that it is impossible.

Solution

• Start with the solution that visits every stop as early as possible.

• For each stop from 1 to n, select a fixed time by delaying it as much as possible while keeping
within the time windows of it and later stops.

• After fixing the time for a stop a, all constraints that limit the time taken between a and a later
stop b can be translated into adjustments of the time window of b.

• If any time ends up outside the stops time window then there is no solution.

Apr 20: Easter
Problem author: David Stangl

Problem
You are given a route consisting of n stops in a fixed order, each with a travel time d from the
previous stop and a time window [s, e] during which you have to visit it. Additionally, there are m
constraints indicating that the time between visiting stop a and stop b must be at most l . Find valid
times to visit the stops, or determine that it is impossible.

Solution

• Start with the solution that visits every stop as early as possible.
• For each stop from 1 to n, select a fixed time by delaying it as much as possible while keeping

within the time windows of it and later stops.

• After fixing the time for a stop a, all constraints that limit the time taken between a and a later
stop b can be translated into adjustments of the time window of b.

• If any time ends up outside the stops time window then there is no solution.

Apr 20: Easter
Problem author: David Stangl

Problem
You are given a route consisting of n stops in a fixed order, each with a travel time d from the
previous stop and a time window [s, e] during which you have to visit it. Additionally, there are m
constraints indicating that the time between visiting stop a and stop b must be at most l . Find valid
times to visit the stops, or determine that it is impossible.

Solution

• Start with the solution that visits every stop as early as possible.
• For each stop from 1 to n, select a fixed time by delaying it as much as possible while keeping

within the time windows of it and later stops.
• After fixing the time for a stop a, all constraints that limit the time taken between a and a later

stop b can be translated into adjustments of the time window of b.

• If any time ends up outside the stops time window then there is no solution.

Apr 20: Easter
Problem author: David Stangl

Problem
You are given a route consisting of n stops in a fixed order, each with a travel time d from the
previous stop and a time window [s, e] during which you have to visit it. Additionally, there are m
constraints indicating that the time between visiting stop a and stop b must be at most l . Find valid
times to visit the stops, or determine that it is impossible.

Solution

• Start with the solution that visits every stop as early as possible.
• For each stop from 1 to n, select a fixed time by delaying it as much as possible while keeping

within the time windows of it and later stops.
• After fixing the time for a stop a, all constraints that limit the time taken between a and a later

stop b can be translated into adjustments of the time window of b.
• If any time ends up outside the stops time window then there is no solution.

Apr 20: Easter
Problem author: David Stangl

Problem
You are given a route consisting of n stops in a fixed order, each with a travel time d from the
previous stop and a time window [s, e] during which you have to visit it. Additionally, there are m
constraints indicating that the time between visiting stop a and stop b must be at most l . Find valid
times to visit the stops, or determine that it is impossible.

Implementation in O((n + m) log n)

• For each stop, keep the maximum total delay before reaching it in a data structure (segment tree,
std::set, etc.).

• When fixing a stop a

• Select the minimum total delay from the data structure to determine how much to delay visiting a.
• Remove the entry for a from the data structure.

• When incorporating constraints into time windows of stops, update the stops entries in the data
structure accordingly.

Apr 20: Easter
Problem author: David Stangl

Problem
You are given a route consisting of n stops in a fixed order, each with a travel time d from the
previous stop and a time window [s, e] during which you have to visit it. Additionally, there are m
constraints indicating that the time between visiting stop a and stop b must be at most l . Find valid
times to visit the stops, or determine that it is impossible.

Implementation in O((n + m) log n)

• For each stop, keep the maximum total delay before reaching it in a data structure (segment tree,
std::set, etc.).

• When fixing a stop a

• Select the minimum total delay from the data structure to determine how much to delay visiting a.
• Remove the entry for a from the data structure.

• When incorporating constraints into time windows of stops, update the stops entries in the data
structure accordingly.

Apr 20: Easter
Problem author: David Stangl

Problem
You are given a route consisting of n stops in a fixed order, each with a travel time d from the
previous stop and a time window [s, e] during which you have to visit it. Additionally, there are m
constraints indicating that the time between visiting stop a and stop b must be at most l . Find valid
times to visit the stops, or determine that it is impossible.

Implementation in O((n + m) log n)

• For each stop, keep the maximum total delay before reaching it in a data structure (segment tree,
std::set, etc.).

• When fixing a stop a
• Select the minimum total delay from the data structure to determine how much to delay visiting a.

• Remove the entry for a from the data structure.

• When incorporating constraints into time windows of stops, update the stops entries in the data
structure accordingly.

Apr 20: Easter
Problem author: David Stangl

Problem
You are given a route consisting of n stops in a fixed order, each with a travel time d from the
previous stop and a time window [s, e] during which you have to visit it. Additionally, there are m
constraints indicating that the time between visiting stop a and stop b must be at most l . Find valid
times to visit the stops, or determine that it is impossible.

Implementation in O((n + m) log n)

• For each stop, keep the maximum total delay before reaching it in a data structure (segment tree,
std::set, etc.).

• When fixing a stop a
• Select the minimum total delay from the data structure to determine how much to delay visiting a.
• Remove the entry for a from the data structure.

• When incorporating constraints into time windows of stops, update the stops entries in the data
structure accordingly.

Apr 20: Easter
Problem author: David Stangl

Problem
You are given a route consisting of n stops in a fixed order, each with a travel time d from the
previous stop and a time window [s, e] during which you have to visit it. Additionally, there are m
constraints indicating that the time between visiting stop a and stop b must be at most l . Find valid
times to visit the stops, or determine that it is impossible.

Implementation in O((n + m) log n)

• For each stop, keep the maximum total delay before reaching it in a data structure (segment tree,
std::set, etc.).

• When fixing a stop a
• Select the minimum total delay from the data structure to determine how much to delay visiting a.
• Remove the entry for a from the data structure.

• When incorporating constraints into time windows of stops, update the stops entries in the data
structure accordingly.

Apr 20: Easter
Problem author: David Stangl

Problem
You are given a route consisting of n stops in a fixed order, each with a travel time d from the
previous stop and a time window [s, e] during which you have to visit it. Additionally, there are m
constraints indicating that the time between visiting stop a and stop b must be at most l . Find valid
times to visit the stops, or determine that it is impossible.

Alternative Solution
The problem can also be translated into a shortest path problem solvable with Dijkstra’s algorithm.
Due to the nature of the graph it can even be solved in O(n + m).

Jul 5: Dependence Day
Problem author: Christopher Weyand

0 50 100 150 200 250 300
0

5

10

15

20

correct
wrong-answer
timelimit
run-error
pending

Jul 5: Dependence Day
Problem author: Christopher Weyand

Problem
Given n intervals that represent table reservations and m intervals that represent waiter shifts. At
each point in time, when there are a active reservations and b active shifts, then each of those b
waiters is responsible for at most ⌈a/b⌉ tables. For each shift, output the maximum number of tables
that the waiter is responsible for at some point in time during their shift.

Solution 1

• Process times when a reservation or shift starts or ends in sorted order while maintaining the
current number of active shifts and occupied tables.

• Compute tables per waiter for each point in time. We call this load.
• Maintain the previous loads in a stack (the most recent on top).
• Before the current load is pushed onto the stack, pop smaller loads from the top.
• Thus the stack will be ordered ascending by load (from top to bottom).
• If a shift ends, query the maximum load since the start of the shift via binary search on the stack.
• Runtime O((n + m) log(n + m)).

Jul 5: Dependence Day
Problem author: Christopher Weyand

Problem
Given n intervals that represent table reservations and m intervals that represent waiter shifts. At
each point in time, when there are a active reservations and b active shifts, then each of those b
waiters is responsible for at most ⌈a/b⌉ tables. For each shift, output the maximum number of tables
that the waiter is responsible for at some point in time during their shift.

Solution 1

• Process times when a reservation or shift starts or ends in sorted order while maintaining the
current number of active shifts and occupied tables.

• Compute tables per waiter for each point in time. We call this load.
• Maintain the previous loads in a stack (the most recent on top).
• Before the current load is pushed onto the stack, pop smaller loads from the top.
• Thus the stack will be ordered ascending by load (from top to bottom).
• If a shift ends, query the maximum load since the start of the shift via binary search on the stack.
• Runtime O((n + m) log(n + m)).

Jul 5: Dependence Day
Problem author: Christopher Weyand

Problem
Given n intervals that represent table reservations and m intervals that represent waiter shifts. At
each point in time, when there are a active reservations and b active shifts, then each of those b
waiters is responsible for at most ⌈a/b⌉ tables. For each shift, output the maximum number of tables
that the waiter is responsible for at some point in time during their shift.

Solution 1

• Process times when a reservation or shift starts or ends in sorted order while maintaining the
current number of active shifts and occupied tables.

• Compute tables per waiter for each point in time. We call this load.

• Maintain the previous loads in a stack (the most recent on top).
• Before the current load is pushed onto the stack, pop smaller loads from the top.
• Thus the stack will be ordered ascending by load (from top to bottom).
• If a shift ends, query the maximum load since the start of the shift via binary search on the stack.
• Runtime O((n + m) log(n + m)).

Jul 5: Dependence Day
Problem author: Christopher Weyand

Problem
Given n intervals that represent table reservations and m intervals that represent waiter shifts. At
each point in time, when there are a active reservations and b active shifts, then each of those b
waiters is responsible for at most ⌈a/b⌉ tables. For each shift, output the maximum number of tables
that the waiter is responsible for at some point in time during their shift.

Solution 1

• Process times when a reservation or shift starts or ends in sorted order while maintaining the
current number of active shifts and occupied tables.

• Compute tables per waiter for each point in time. We call this load.
• Maintain the previous loads in a stack (the most recent on top).

• Before the current load is pushed onto the stack, pop smaller loads from the top.
• Thus the stack will be ordered ascending by load (from top to bottom).
• If a shift ends, query the maximum load since the start of the shift via binary search on the stack.
• Runtime O((n + m) log(n + m)).

Jul 5: Dependence Day
Problem author: Christopher Weyand

Problem
Given n intervals that represent table reservations and m intervals that represent waiter shifts. At
each point in time, when there are a active reservations and b active shifts, then each of those b
waiters is responsible for at most ⌈a/b⌉ tables. For each shift, output the maximum number of tables
that the waiter is responsible for at some point in time during their shift.

Solution 1

• Process times when a reservation or shift starts or ends in sorted order while maintaining the
current number of active shifts and occupied tables.

• Compute tables per waiter for each point in time. We call this load.
• Maintain the previous loads in a stack (the most recent on top).
• Before the current load is pushed onto the stack, pop smaller loads from the top.

• Thus the stack will be ordered ascending by load (from top to bottom).
• If a shift ends, query the maximum load since the start of the shift via binary search on the stack.
• Runtime O((n + m) log(n + m)).

Jul 5: Dependence Day
Problem author: Christopher Weyand

Problem
Given n intervals that represent table reservations and m intervals that represent waiter shifts. At
each point in time, when there are a active reservations and b active shifts, then each of those b
waiters is responsible for at most ⌈a/b⌉ tables. For each shift, output the maximum number of tables
that the waiter is responsible for at some point in time during their shift.

Solution 1

• Process times when a reservation or shift starts or ends in sorted order while maintaining the
current number of active shifts and occupied tables.

• Compute tables per waiter for each point in time. We call this load.
• Maintain the previous loads in a stack (the most recent on top).
• Before the current load is pushed onto the stack, pop smaller loads from the top.
• Thus the stack will be ordered ascending by load (from top to bottom).

• If a shift ends, query the maximum load since the start of the shift via binary search on the stack.
• Runtime O((n + m) log(n + m)).

Jul 5: Dependence Day
Problem author: Christopher Weyand

Problem
Given n intervals that represent table reservations and m intervals that represent waiter shifts. At
each point in time, when there are a active reservations and b active shifts, then each of those b
waiters is responsible for at most ⌈a/b⌉ tables. For each shift, output the maximum number of tables
that the waiter is responsible for at some point in time during their shift.

Solution 1

• Process times when a reservation or shift starts or ends in sorted order while maintaining the
current number of active shifts and occupied tables.

• Compute tables per waiter for each point in time. We call this load.
• Maintain the previous loads in a stack (the most recent on top).
• Before the current load is pushed onto the stack, pop smaller loads from the top.
• Thus the stack will be ordered ascending by load (from top to bottom).
• If a shift ends, query the maximum load since the start of the shift via binary search on the stack.

• Runtime O((n + m) log(n + m)).

Jul 5: Dependence Day
Problem author: Christopher Weyand

Problem
Given n intervals that represent table reservations and m intervals that represent waiter shifts. At
each point in time, when there are a active reservations and b active shifts, then each of those b
waiters is responsible for at most ⌈a/b⌉ tables. For each shift, output the maximum number of tables
that the waiter is responsible for at some point in time during their shift.

Solution 1

• Process times when a reservation or shift starts or ends in sorted order while maintaining the
current number of active shifts and occupied tables.

• Compute tables per waiter for each point in time. We call this load.
• Maintain the previous loads in a stack (the most recent on top).
• Before the current load is pushed onto the stack, pop smaller loads from the top.
• Thus the stack will be ordered ascending by load (from top to bottom).
• If a shift ends, query the maximum load since the start of the shift via binary search on the stack.
• Runtime O((n + m) log(n + m)).

Jul 5: Dependence Day
Problem author: Christopher Weyand

Problem
Given n intervals that represent table reservations and m intervals that represent waiter shifts. At
each point in time, when there are a active reservations and b active shifts, then each of those b
waiters is responsible for at most ⌈a/b⌉ tables. For each shift, output the maximum number of tables
that the waiter is responsible for at some point in time during their shift.

Solution 2

• Do coordinate compression on all time points.

• Compute the load at each time like in Solution 1.
• From the loads, build any data structure that supports fast range-maximum queries. E.g.

Segment Tree or Sparse Table.
• Compute the result for each shift by querying the data structure.
• Runtime O((n + m) log(n + m)).

Jul 5: Dependence Day
Problem author: Christopher Weyand

Problem
Given n intervals that represent table reservations and m intervals that represent waiter shifts. At
each point in time, when there are a active reservations and b active shifts, then each of those b
waiters is responsible for at most ⌈a/b⌉ tables. For each shift, output the maximum number of tables
that the waiter is responsible for at some point in time during their shift.

Solution 2

• Do coordinate compression on all time points.
• Compute the load at each time like in Solution 1.

• From the loads, build any data structure that supports fast range-maximum queries. E.g.
Segment Tree or Sparse Table.

• Compute the result for each shift by querying the data structure.
• Runtime O((n + m) log(n + m)).

Jul 5: Dependence Day
Problem author: Christopher Weyand

Problem
Given n intervals that represent table reservations and m intervals that represent waiter shifts. At
each point in time, when there are a active reservations and b active shifts, then each of those b
waiters is responsible for at most ⌈a/b⌉ tables. For each shift, output the maximum number of tables
that the waiter is responsible for at some point in time during their shift.

Solution 2

• Do coordinate compression on all time points.
• Compute the load at each time like in Solution 1.
• From the loads, build any data structure that supports fast range-maximum queries. E.g.

Segment Tree or Sparse Table.

• Compute the result for each shift by querying the data structure.
• Runtime O((n + m) log(n + m)).

Jul 5: Dependence Day
Problem author: Christopher Weyand

Problem
Given n intervals that represent table reservations and m intervals that represent waiter shifts. At
each point in time, when there are a active reservations and b active shifts, then each of those b
waiters is responsible for at most ⌈a/b⌉ tables. For each shift, output the maximum number of tables
that the waiter is responsible for at some point in time during their shift.

Solution 2

• Do coordinate compression on all time points.
• Compute the load at each time like in Solution 1.
• From the loads, build any data structure that supports fast range-maximum queries. E.g.

Segment Tree or Sparse Table.
• Compute the result for each shift by querying the data structure.

• Runtime O((n + m) log(n + m)).

Jul 5: Dependence Day
Problem author: Christopher Weyand

Problem
Given n intervals that represent table reservations and m intervals that represent waiter shifts. At
each point in time, when there are a active reservations and b active shifts, then each of those b
waiters is responsible for at most ⌈a/b⌉ tables. For each shift, output the maximum number of tables
that the waiter is responsible for at some point in time during their shift.

Solution 2

• Do coordinate compression on all time points.
• Compute the load at each time like in Solution 1.
• From the loads, build any data structure that supports fast range-maximum queries. E.g.

Segment Tree or Sparse Table.
• Compute the result for each shift by querying the data structure.
• Runtime O((n + m) log(n + m)).

Jul 25: Sysadmin Day
Problem author: Paul Wild

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14
correct

wrong-answer
timelimit
run-error
pending

Jul 25: Sysadmin Day
Problem author: Paul Wild

Problem

• Print an image consisting of pixels in up to eight colours using a CMYK printer.
• Toners are available in cyan, magenta, yellow and black.
• White, red, green and blue pixels can be achieved using subtractive colour mixing.
• Given the amount and per-pixel cost of each toner, minimize the total cost.

Solution

• Each colour except for black can be printed in a unique way.
• Print all of these in a first pass and record how much toner of each type is left.
• In a second pass, greedily choose the cheapest option for each black pixel.
• Running time: O(h · w)

Jul 25: Sysadmin Day
Problem author: Paul Wild

Problem

• Print an image consisting of pixels in up to eight colours using a CMYK printer.
• Toners are available in cyan, magenta, yellow and black.
• White, red, green and blue pixels can be achieved using subtractive colour mixing.
• Given the amount and per-pixel cost of each toner, minimize the total cost.

Solution

• Each colour except for black can be printed in a unique way.
• Print all of these in a first pass and record how much toner of each type is left.
• In a second pass, greedily choose the cheapest option for each black pixel.
• Running time: O(h · w)

Jul 30: Friendship Day
Problem author: Jannik Olbrich

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14
correct

wrong-answer
timelimit
run-error
pending

Jul 30: Friendship Day
Problem author: Jannik Olbrich

Problem
Given a Graph, map each vertex to a line such that two lines intersect iff the corresponding vertices
are neighbours

Solution

• Two lines intersect iff they are not parallel

• The line of a vertex v must be parallel to the line of every u that is not a neighbour of v
• This is possible iff the complement of the graph is a disjoint union of cliques
• But the complement graph has way too many edges. . .
• Use a DSU data structure to maintain the cliques: Loop over the vertices that are the

representative element of their set, and union each with all sets that are not adjacent to this
vertex.

• Now we just need to ensure that the set of edges exactly matches the set of edges between the
DSU-sets

• Time complexity: O(n + m log∗ n)

Jul 30: Friendship Day
Problem author: Jannik Olbrich

Problem
Given a Graph, map each vertex to a line such that two lines intersect iff the corresponding vertices
are neighbours

Solution

• Two lines intersect iff they are not parallel
• The line of a vertex v must be parallel to the line of every u that is not a neighbour of v

• This is possible iff the complement of the graph is a disjoint union of cliques
• But the complement graph has way too many edges. . .
• Use a DSU data structure to maintain the cliques: Loop over the vertices that are the

representative element of their set, and union each with all sets that are not adjacent to this
vertex.

• Now we just need to ensure that the set of edges exactly matches the set of edges between the
DSU-sets

• Time complexity: O(n + m log∗ n)

Jul 30: Friendship Day
Problem author: Jannik Olbrich

Problem
Given a Graph, map each vertex to a line such that two lines intersect iff the corresponding vertices
are neighbours

Solution

• Two lines intersect iff they are not parallel
• The line of a vertex v must be parallel to the line of every u that is not a neighbour of v
• This is possible iff the complement of the graph is a disjoint union of cliques

• But the complement graph has way too many edges. . .
• Use a DSU data structure to maintain the cliques: Loop over the vertices that are the

representative element of their set, and union each with all sets that are not adjacent to this
vertex.

• Now we just need to ensure that the set of edges exactly matches the set of edges between the
DSU-sets

• Time complexity: O(n + m log∗ n)

Jul 30: Friendship Day
Problem author: Jannik Olbrich

Problem
Given a Graph, map each vertex to a line such that two lines intersect iff the corresponding vertices
are neighbours

Solution

• Two lines intersect iff they are not parallel
• The line of a vertex v must be parallel to the line of every u that is not a neighbour of v
• This is possible iff the complement of the graph is a disjoint union of cliques
• But the complement graph has way too many edges. . .

• Use a DSU data structure to maintain the cliques: Loop over the vertices that are the
representative element of their set, and union each with all sets that are not adjacent to this
vertex.

• Now we just need to ensure that the set of edges exactly matches the set of edges between the
DSU-sets

• Time complexity: O(n + m log∗ n)

Jul 30: Friendship Day
Problem author: Jannik Olbrich

Problem
Given a Graph, map each vertex to a line such that two lines intersect iff the corresponding vertices
are neighbours

Solution

• Two lines intersect iff they are not parallel
• The line of a vertex v must be parallel to the line of every u that is not a neighbour of v
• This is possible iff the complement of the graph is a disjoint union of cliques
• But the complement graph has way too many edges. . .
• Use a DSU data structure to maintain the cliques: Loop over the vertices that are the

representative element of their set, and union each with all sets that are not adjacent to this
vertex.

• Now we just need to ensure that the set of edges exactly matches the set of edges between the
DSU-sets

• Time complexity: O(n + m log∗ n)

Jul 30: Friendship Day
Problem author: Jannik Olbrich

Problem
Given a Graph, map each vertex to a line such that two lines intersect iff the corresponding vertices
are neighbours

Solution

• Two lines intersect iff they are not parallel
• The line of a vertex v must be parallel to the line of every u that is not a neighbour of v
• This is possible iff the complement of the graph is a disjoint union of cliques
• But the complement graph has way too many edges. . .
• Use a DSU data structure to maintain the cliques: Loop over the vertices that are the

representative element of their set, and union each with all sets that are not adjacent to this
vertex.

• Now we just need to ensure that the set of edges exactly matches the set of edges between the
DSU-sets

• Time complexity: O(n + m log∗ n)

Jul 30: Friendship Day
Problem author: Jannik Olbrich

Problem
Given a Graph, map each vertex to a line such that two lines intersect iff the corresponding vertices
are neighbours

Solution

• Two lines intersect iff they are not parallel
• The line of a vertex v must be parallel to the line of every u that is not a neighbour of v
• This is possible iff the complement of the graph is a disjoint union of cliques
• But the complement graph has way too many edges. . .
• Use a DSU data structure to maintain the cliques: Loop over the vertices that are the

representative element of their set, and union each with all sets that are not adjacent to this
vertex.

• Now we just need to ensure that the set of edges exactly matches the set of edges between the
DSU-sets

• Time complexity: O(n + m log∗ n)

Nov 14: Domino Day
Problem author: Lucas Alber

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14
correct

wrong-answer
timelimit
run-error
pending

Nov 14: Domino Day
Problem author: Lucas Alber

Problem
Given 2n colors, compute a sequence of colors, such that all permutations of [1, ..., 2n] that are
obtainable by swapping at inner nodes of an implicit binary tree are contained as subsequence.

Observation

• n ⇒ n + 1: The new colors never mix with the old colors using the described permutations.
• We can reuse the same solution and obtain a shortest sequence B for the new colors by adding 2n

to the current sequence A.
• To allow for the colors to appear in any order, the resulting sequence has to have the form ABA.

Solution

• Start with i = 0, s = [1].
• Obtain the next sequence as s ∗ (s + 2i) ∗ s and set i = i + 1.
• Repeat until i = n.

Nov 14: Domino Day
Problem author: Lucas Alber

Problem
Given 2n colors, compute a sequence of colors, such that all permutations of [1, ..., 2n] that are
obtainable by swapping at inner nodes of an implicit binary tree are contained as subsequence.

Observation

• n ⇒ n + 1: The new colors never mix with the old colors using the described permutations.
• We can reuse the same solution and obtain a shortest sequence B for the new colors by adding 2n

to the current sequence A.
• To allow for the colors to appear in any order, the resulting sequence has to have the form ABA.

Solution

• Start with i = 0, s = [1].
• Obtain the next sequence as s ∗ (s + 2i) ∗ s and set i = i + 1.
• Repeat until i = n.

Nov 14: Domino Day
Problem author: Lucas Alber

Problem
Given 2n colors, compute a sequence of colors, such that all permutations of [1, ..., 2n] that are
obtainable by swapping at inner nodes of an implicit binary tree are contained as subsequence.

Observation

• n ⇒ n + 1: The new colors never mix with the old colors using the described permutations.
• We can reuse the same solution and obtain a shortest sequence B for the new colors by adding 2n

to the current sequence A.
• To allow for the colors to appear in any order, the resulting sequence has to have the form ABA.

Solution

• Start with i = 0, s = [1].
• Obtain the next sequence as s ∗ (s + 2i) ∗ s and set i = i + 1.
• Repeat until i = n.

Nov 27: Thanksgiving
Problem author: Christopher Weyand

0 50 100 150 200 250 300
0

5

10

15

20

25 correct
wrong-answer
timelimit
run-error
pending

Nov 27: Thanksgiving
Problem author: Christopher Weyand

Problem
Given a graph with one outgoing edge per node. How many nodes are reachable from node 1?

Solution

• Follow the edges starting from node 1.
• Mark all visited nodes.
• Stop once you encounter a node that is already marked (cycle).
• Count how many nodes are marked in the end.

Nov 27: Thanksgiving
Problem author: Christopher Weyand

Problem
Given a graph with one outgoing edge per node. How many nodes are reachable from node 1?

Solution

• Follow the edges starting from node 1.

• Mark all visited nodes.
• Stop once you encounter a node that is already marked (cycle).
• Count how many nodes are marked in the end.

Nov 27: Thanksgiving
Problem author: Christopher Weyand

Problem
Given a graph with one outgoing edge per node. How many nodes are reachable from node 1?

Solution

• Follow the edges starting from node 1.
• Mark all visited nodes.

• Stop once you encounter a node that is already marked (cycle).
• Count how many nodes are marked in the end.

Nov 27: Thanksgiving
Problem author: Christopher Weyand

Problem
Given a graph with one outgoing edge per node. How many nodes are reachable from node 1?

Solution

• Follow the edges starting from node 1.
• Mark all visited nodes.
• Stop once you encounter a node that is already marked (cycle).

• Count how many nodes are marked in the end.

Nov 27: Thanksgiving
Problem author: Christopher Weyand

Problem
Given a graph with one outgoing edge per node. How many nodes are reachable from node 1?

Solution

• Follow the edges starting from node 1.
• Mark all visited nodes.
• Stop once you encounter a node that is already marked (cycle).
• Count how many nodes are marked in the end.

Dec 1: Advent
Problem author: Wendy Yi

0 50 100 150 200 250 300
0

5

10

15

20

correct
wrong-answer
timelimit
run-error
pending

Dec 1: Advent
Problem author: Wendy Yi

Problem
Given n chocolate pieces of k types, arrange them such that no two pieces of the same type are next
to each other.

Observation

• This is impossible if there are more than ⌈ n
2 ⌉ pieces of the same type, otherwise possible.

Solution

• Sort the types in decreasing order.
• Starting with the most common type, fill every other day with a piece.
• After reaching the end, repeat the process, starting with the second day.

2 1 2 3 2 4 1

Running time: O(n log(n))

Dec 1: Advent
Problem author: Wendy Yi

Problem
Given n chocolate pieces of k types, arrange them such that no two pieces of the same type are next
to each other.

Observation

• This is impossible if there are more than ⌈ n
2 ⌉ pieces of the same type, otherwise possible.

Solution

• Sort the types in decreasing order.
• Starting with the most common type, fill every other day with a piece.
• After reaching the end, repeat the process, starting with the second day.

2 1 2 3 2 4 1

Running time: O(n log(n))

Dec 1: Advent
Problem author: Wendy Yi

Problem
Given n chocolate pieces of k types, arrange them such that no two pieces of the same type are next
to each other.

Observation

• This is impossible if there are more than ⌈ n
2 ⌉ pieces of the same type, otherwise possible.

Solution

• Sort the types in decreasing order.
• Starting with the most common type, fill every other day with a piece.
• After reaching the end, repeat the process, starting with the second day.

2 1 2 3 2 4 1

Running time: O(n log(n))

Dec 1: Advent
Problem author: Wendy Yi

Problem
Given n chocolate pieces of k types, arrange them such that no two pieces of the same type are next
to each other.

Observation

• This is impossible if there are more than ⌈ n
2 ⌉ pieces of the same type, otherwise possible.

Solution

• Sort the types in decreasing order.
• Starting with the most common type, fill every other day with a piece.
• After reaching the end, repeat the process, starting with the second day.

2

1 2 3 2 4 1

Running time: O(n log(n))

Dec 1: Advent
Problem author: Wendy Yi

Problem
Given n chocolate pieces of k types, arrange them such that no two pieces of the same type are next
to each other.

Observation

• This is impossible if there are more than ⌈ n
2 ⌉ pieces of the same type, otherwise possible.

Solution

• Sort the types in decreasing order.
• Starting with the most common type, fill every other day with a piece.
• After reaching the end, repeat the process, starting with the second day.

2

1

2

3 2 4 1

Running time: O(n log(n))

Dec 1: Advent
Problem author: Wendy Yi

Problem
Given n chocolate pieces of k types, arrange them such that no two pieces of the same type are next
to each other.

Observation

• This is impossible if there are more than ⌈ n
2 ⌉ pieces of the same type, otherwise possible.

Solution

• Sort the types in decreasing order.
• Starting with the most common type, fill every other day with a piece.
• After reaching the end, repeat the process, starting with the second day.

2

1

2

3

2

4 1

Running time: O(n log(n))

Dec 1: Advent
Problem author: Wendy Yi

Problem
Given n chocolate pieces of k types, arrange them such that no two pieces of the same type are next
to each other.

Observation

• This is impossible if there are more than ⌈ n
2 ⌉ pieces of the same type, otherwise possible.

Solution

• Sort the types in decreasing order.
• Starting with the most common type, fill every other day with a piece.
• After reaching the end, repeat the process, starting with the second day.

2

1

2

3

2

4

1

Running time: O(n log(n))

Dec 1: Advent
Problem author: Wendy Yi

Problem
Given n chocolate pieces of k types, arrange them such that no two pieces of the same type are next
to each other.

Observation

• This is impossible if there are more than ⌈ n
2 ⌉ pieces of the same type, otherwise possible.

Solution

• Sort the types in decreasing order.
• Starting with the most common type, fill every other day with a piece.
• After reaching the end, repeat the process, starting with the second day.

2 1 2

3

2

4

1

Running time: O(n log(n))

Dec 1: Advent
Problem author: Wendy Yi

Problem
Given n chocolate pieces of k types, arrange them such that no two pieces of the same type are next
to each other.

Observation

• This is impossible if there are more than ⌈ n
2 ⌉ pieces of the same type, otherwise possible.

Solution

• Sort the types in decreasing order.
• Starting with the most common type, fill every other day with a piece.
• After reaching the end, repeat the process, starting with the second day.

2 1 2 3 2

4

1

Running time: O(n log(n))

Dec 1: Advent
Problem author: Wendy Yi

Problem
Given n chocolate pieces of k types, arrange them such that no two pieces of the same type are next
to each other.

Observation

• This is impossible if there are more than ⌈ n
2 ⌉ pieces of the same type, otherwise possible.

Solution

• Sort the types in decreasing order.
• Starting with the most common type, fill every other day with a piece.
• After reaching the end, repeat the process, starting with the second day.

2 1 2 3 2 4 1

Running time: O(n log(n))

Dec 1: Advent
Problem author: Wendy Yi

Problem
Given n chocolate pieces of k types, arrange them such that no two pieces of the same type are next
to each other.

Observation

• This is impossible if there are more than ⌈ n
2 ⌉ pieces of the same type, otherwise possible.

Solution

• Sort the types in decreasing order.
• Starting with the most common type, fill every other day with a piece.
• After reaching the end, repeat the process, starting with the second day.

2 1 2 3 2 4 1

Running time: O(n log(n))

Dec 1: Advent
Problem author: Wendy Yi

Problem
Given n chocolate pieces of k types, arrange them such that no two pieces of the same type are next
to each other.

Observation

• This is impossible if there are more than ⌈ n
2 ⌉ pieces of the same type, otherwise possible.

Alternative solution

• Fill each day with a piece of currently most common type that is allowed to use (i.e, not used
yesterday).

• Keep track of number of pieces per type and current maximum using a priority queue.
• Running time: O(n log(n))

Dec 31: New Year’s Eve
Problem author: Christopher Weyand

0 50 100 150 200 250 300
0

10

20

30

40

correct
wrong-answer
timelimit
run-error
pending

Dec 31: New Year’s Eve
Problem author: Christopher Weyand

Problem
You are planning n trips that each cost 100 Euro. Bahncard X gives X% discount on all trips. You
can buy Bahncard 25, 50, or 100 for a, b, c Euro, respectively. Should you buy a Bahncard, and if so,
which one?

Total Costs

• No Bahncard: 100n
• Bahncard 25: 75n + a
• Bahncard 50: 50n + b
• Bahncard 100: c

Solution
Compute the cost for each option and print the cheapest.

Dec 31: New Year’s Eve
Problem author: Christopher Weyand

Problem
You are planning n trips that each cost 100 Euro. Bahncard X gives X% discount on all trips. You
can buy Bahncard 25, 50, or 100 for a, b, c Euro, respectively. Should you buy a Bahncard, and if so,
which one?

Total Costs

• No Bahncard: 100n

• Bahncard 25: 75n + a
• Bahncard 50: 50n + b
• Bahncard 100: c

Solution
Compute the cost for each option and print the cheapest.

Dec 31: New Year’s Eve
Problem author: Christopher Weyand

Problem
You are planning n trips that each cost 100 Euro. Bahncard X gives X% discount on all trips. You
can buy Bahncard 25, 50, or 100 for a, b, c Euro, respectively. Should you buy a Bahncard, and if so,
which one?

Total Costs

• No Bahncard: 100n
• Bahncard 25: 75n + a

• Bahncard 50: 50n + b
• Bahncard 100: c

Solution
Compute the cost for each option and print the cheapest.

Dec 31: New Year’s Eve
Problem author: Christopher Weyand

Problem
You are planning n trips that each cost 100 Euro. Bahncard X gives X% discount on all trips. You
can buy Bahncard 25, 50, or 100 for a, b, c Euro, respectively. Should you buy a Bahncard, and if so,
which one?

Total Costs

• No Bahncard: 100n
• Bahncard 25: 75n + a
• Bahncard 50: 50n + b

• Bahncard 100: c

Solution
Compute the cost for each option and print the cheapest.

Dec 31: New Year’s Eve
Problem author: Christopher Weyand

Problem
You are planning n trips that each cost 100 Euro. Bahncard X gives X% discount on all trips. You
can buy Bahncard 25, 50, or 100 for a, b, c Euro, respectively. Should you buy a Bahncard, and if so,
which one?

Total Costs

• No Bahncard: 100n
• Bahncard 25: 75n + a
• Bahncard 50: 50n + b
• Bahncard 100: c

Solution
Compute the cost for each option and print the cheapest.

Dec 31: New Year’s Eve
Problem author: Christopher Weyand

Problem
You are planning n trips that each cost 100 Euro. Bahncard X gives X% discount on all trips. You
can buy Bahncard 25, 50, or 100 for a, b, c Euro, respectively. Should you buy a Bahncard, and if so,
which one?

Total Costs

• No Bahncard: 100n
• Bahncard 25: 75n + a
• Bahncard 50: 50n + b
• Bahncard 100: c

Solution
Compute the cost for each option and print the cheapest.

Dec 31: New Year’s Eve
Problem author: Christopher Weyand

Problem
You are planning n trips that each cost 100 Euro. Bahncard X gives X% discount on all trips. You
can buy Bahncard 25, 50, or 100 for a, b, c Euro, respectively. Should you buy a Bahncard, and if so,
which one?

Total Costs

• No Bahncard: 100n
• Bahncard 25: 75n + a
• Bahncard 50: 50n + b
• Bahncard 100: c

Solution
Compute the cost for each option and print the cheapest.

Random facts

Jury work

• 652 secret test cases (≈ 50 per problem)

• 119 jury solutions
• The minimum number of lines the jury needed to solve all problems is

1 + 41 + 110 + 14 + 48 + 39 + 37 + 6 + 13 + 2 + 2 + 5 + 2 = 320

On average 24.6 lines per problem
• The minimum number of characters the jury needed to solve all problems is

102 + 1421 + 4397 + 336 + 1191 + 1259 + 929 + 431 + 692 + 119 + 124 + 207 + 166

On average 875 characters per problem

Random facts

Jury work

• 652 secret test cases (≈ 50 per problem)
• 119 jury solutions

• The minimum number of lines the jury needed to solve all problems is

1 + 41 + 110 + 14 + 48 + 39 + 37 + 6 + 13 + 2 + 2 + 5 + 2 = 320

On average 24.6 lines per problem
• The minimum number of characters the jury needed to solve all problems is

102 + 1421 + 4397 + 336 + 1191 + 1259 + 929 + 431 + 692 + 119 + 124 + 207 + 166

On average 875 characters per problem

Random facts

Jury work

• 652 secret test cases (≈ 50 per problem)
• 119 jury solutions
• The minimum number of lines the jury needed to solve all problems is

1 + 41 + 110 + 14 + 48 + 39 + 37 + 6 + 13 + 2 + 2 + 5 + 2 = 320

On average 24.6 lines per problem

• The minimum number of characters the jury needed to solve all problems is

102 + 1421 + 4397 + 336 + 1191 + 1259 + 929 + 431 + 692 + 119 + 124 + 207 + 166

On average 875 characters per problem

Random facts

Jury work

• 652 secret test cases (≈ 50 per problem)
• 119 jury solutions
• The minimum number of lines the jury needed to solve all problems is

1 + 41 + 110 + 14 + 48 + 39 + 37 + 6 + 13 + 2 + 2 + 5 + 2 = 320

On average 24.6 lines per problem
• The minimum number of characters the jury needed to solve all problems is

102 + 1421 + 4397 + 336 + 1191 + 1259 + 929 + 431 + 692 + 119 + 124 + 207 + 166

On average 875 characters per problem

