Winter Contest 2025 Presentation of Solutions

The Winter Contest Jury
February 6, 2025



Winter Contest 2025 Jury

= Lucas Alber
Karlsruhe Institute of Technology
= Felicia Lucke
Durham University UK, CPUIm
= Niyaz Nigmatullin
JetBrains
= Jannik Olbrich
Ulm University, CPUIm
= David Stangl
MOIA GmbH

Christopher Weyand

MOIA GmbH, CPUIm

Paul Wild

Friedrich-Alexander University
Erlangen-Niirnberg, CPUIm

Wendy Yi

Karlsruhe Institute of Technology, CPUIm
Michael Ziindorf

Karlsruhe Institute of Technology, CPUIm



Winter Contest 2025 Test Solvers

= Brutenis Gliwa
Planet Al GmbH, CPUIm

= Andreas Grigorjew
University of Helsinki FI, CPUIm



Winter Contest 2025 Technical Team

= Nathan Maier
CPUIm

= Alexander Schmid
CPUIm

= Pascal Weber
University of Vienna, CPUIm



Jan 25: Winter Contest

Problem author: Paul Wild

40 F T B
B correct
B wrong-answer
35 B timelimit B
run-error
30 - | B pending |
25 | a
20 8
15} = .
|
10 8
50 [ | N |
0 | |

| | |
0 50 100 150 200 250 300



Jan 25: Winter Contest

Problem author: Paul Wild

Problem
Given a range of years, find the number of dates falling into that range where each of year, month
and day is a square number.



Jan 25: Winter Contest

Problem author: Paul Wild

Problem
Given a range of years, find the number of dates falling into that range where each of year, month

and day is a square number.

Solution

= Enumerating all dates in the range is kind of annoying but doable.

= We can make things easier for ourselves:
= We only care about months 1, 4 and 9 and days 1, 4, 9, 16, 25.
= So there are always 15 possible days for each square year.

= To find square years, loop over 45 < x < 99 and check if x? is in the given range.



Jan 29: Chinese New Year

Problem author: Michael Ziindorf

12 -
B correct
B wrong-answer
ol B timelimit B
run-error
B pending
8 |- —
6 |-
4 |-
2 |-
0 |

0 50 100 150 200 250 300



Jan 29: Chinese New Year

Problem author: Michael Ziindorf

RO
s @ (o)
T (OGem—(s)

Problem ‘ O

Given a planar graph G, decompose it into the minimal ’ 0 @

number of — not necessarily simple — paths. i © o
2 ®




Jan 29: Chinese New Year

Problem author: Michael Ziindorf

Observation 1

= A single path only contains two odd degree vertices.

t F#oddh vertlcss

= We need at leas paths.



Jan 29: Chinese New Year

Problem author: Michael Ziindorf

Observation 1
= A single path only contains two odd degree vertices.

t #odd vertlcss

= We need at leas paths.

Observation 2

= Even if there is no odd vertex, each component needs at least one path.



Jan 29: Chinese New Year

Problem author: Michael Ziindorf

Observation 1
= A single path only contains two odd degree vertices.

t # oddvertlcss

= We need at leas paths.

Observation 2

= Even if there is no odd vertex, each component needs at least one path.

Solution
= Pair up the odd degree vertices in any way and add an edge.
= The resulting graph contains an euler tour.

= Split this tour along the added edges.



Mar 3: Carnival

Problem author: Felicia Lucke

T
25 |- [ | correct
M wrong-answer
B timelimit
run-error
20 B pending
15
10 |-
5 |-
L B m

|
0 50 100 150 200 250 300



Mar 3: Carnival

Problem author: Felicia Lucke

Problem
Given a graph G of radius 2, colour the vertices with two colours R and B such that every vertex is
adjacent to at most one vertex of the other colour.



Mar 3: Carnival

Problem author: Felicia Lucke

Problem
Given a graph G of radius 2, colour the vertices with two colours R and B such that every vertex is

adjacent to at most one vertex of the other colour.

Solution
= Find v at distance at most 2 to every other vertex.

= Colour v blue.

(



Mar 3: Carnival

Problem author: Felicia Lucke

Problem
Given a graph G of radius 2, colour the vertices with two colours R and B such that every vertex is
adjacent to at most one vertex of the other colour.

Solution
= Find v at distance at most 2 to every other vertex.
= Colour v blue.
= At most one neighbour of v is red.
= Try all options to colour the neighbours of v. /‘
= |n the case where all are blue, try all options to colour N
one other vertex of G red. ‘ ‘



Mar 3: Carnival

Problem author: Felicia Lucke

Problem

Given a graph G of radius 2, colour the vertices with two colours R and B such that every vertex is
adjacent to at most one vertex of the other colour.

Solution
= Find v at distance at most 2 to every other vertex.

= Colour v blue.
= At most one neighbour of v is red.
= Try all options to colour the neighbours of v. /‘
= |n the case where all are blue, try all options to colour
one other vertex of G red. ‘\‘

= Propagate the colouring:
= A vertex with two red (blue) neighbours has to be red
(blue).
= If a red (blue) vertex has a blue (red) neighbour, all
other neighbours are red (blue).



Mar 3: Carnival

Problem author: Felicia Lucke

Problem

Given a graph G of radius 2, colour the vertices with two colours R and B such that every vertex is
adjacent to at most one vertex of the other colour.

Solution
= Find v at distance at most 2 to every other vertex.

= Colour v blue.
= At most one neighbour of v is red.
= Try all options to colour the neighbours of v. /‘
= |n the case where all are blue, try all options to colour
one other vertex of G red. ‘\‘

= Propagate the colouring:
= A vertex with two red (blue) neighbours has to be red
(blue).
= If a red (blue) vertex has a blue (red) neighbour, all
other neighbours are red (blue).



Mar 3: Carnival

Problem author: Felicia Lucke

Observation 1

Every uncoloured vertex has exactly one blue neighbour

/]
N



Mar 3: Carnival

Problem author: Felicia Lucke

Observation 1

Every uncoloured vertex has exactly one blue neighbour

Observation 2 / ‘
Every connected component in the graph of uncoloured
vertices is either fully red or fully blue.



Mar 3: Carnival

Problem author: Felicia Lucke

Observation 1

Every uncoloured vertex has exactly one blue neighbour

Observation 2 / ‘

Every connected component in the graph of uncoloured
vertices is either fully red or fully blue.
Solve by 2-SAT

= One variable per uncoloured component indicates
whether red or blue, say true means blue.

= Clause (x) if a blue vertex has two neighbours in the
same component

= Clause (x V y) for any two components with a common
blue neighbour

Total runtime O(n * m)



Mar 3: Carnival

Problem author: Felicia Lucke

Observation 1

Every uncoloured vertex has exactly one blue neighbour

Observation 2
Every connected component in the graph of uncoloured
vertices is either fully red or fully blue.

Solve by 2-SAT

= One variable per uncoloured component indicates
whether red or blue, say true means blue.

= Clause (x) if a blue vertex has two neighbours in the
same component

= Clause (x V y) for any two components with a common
blue neighbour

Total runtime O(n * m)

/]
N

Note

For every 2-SAT formula, we can
construct a graph where solving
this problem corresponds to
checking satisfiability.



Mar 14: Pi Day

Problem author: Paul Wild

20 B correct 7
B wrong-answer
18 - B timelimit
run-error
16 |- B pending

0 50 100 150 200 250 300



Mar 14: Pi Day
Problem author: Paul Wild

Problem
= A calculator encrypts the digits 0-9 using the letters a-j.
= You can interactively add numbers to the calculator’s display value.
= Your queries also use the letters a-j, so you don't know which numbers you add.

= Figure out enough parts of the cipher to print the current display number in plaintext.




Mar 14: Pi Day

Problem author: Paul Wild

Insight

Even though you don’t have to, it's easiest to figure out the complete cipher.



Mar 14: Pi Day
Problem author: Paul Wild

Insight

Even though you don’t have to, it's easiest to figure out the complete cipher.

Solution 1 — Adding single digit numbers
= Cycle through the letters a-j and them add one by one.
= Track the last digit to find out which letter corresponds to 0.
= Track the second to last digit to find out the cyclic order of digits.

= After at most 30 queries you should know the full cipher.



Mar 14: Pi Day
Problem author: Paul Wild

Insight

Even though you don’t have to, it's easiest to figure out the complete cipher.

Solution 1 — Adding single digit numbers
= Cycle through the letters a-j and them add one by one.
= Track the last digit to find out which letter corresponds to 0.
= Track the second to last digit to find out the cyclic order of digits.

= After at most 30 queries you should know the full cipher.

Solution 2 — Adding large numbers
= Add a few random large numbers and note down the results.
= Solve the cryptarithm puzzle by trying out all 10! permutations of a-j.

= Given enough numbers (5 is plenty), the puzzle has a unique solution.



Mar 21: Colour Day

Problem author: Jannik Olbrich

T
B correct
B wrong-answer
B timelimit
81 run-error 1
B pending
6 |- -
4 |-
2 |-
O | l\ E Il \j

0 50 100 150 200 250 300



Mar 21: Colour Day

Problem author: Jannik Olbrich

Problem
Given two regular expressions a; and «p without nesting or Kleene-star, find a string in the
languages’ intersection (or determine that there is none)

= Build DAGs g1 and g» representing all strings in the (m)(Y | €)(c)(Ymc | c)(M | y)
languages

7.1
%O—»OP‘O—>£—>%

©



Mar 21: Colour Day

Problem author: Jannik Olbrich

Problem
Given two regular expressions a; and «p without nesting or Kleene-star, find a string in the
languages’ intersection (or determine that there is none)

= Build DAGs g1 and g» representing all strings in the (m)(Y | €)(c)(Ymc | c)(M | y)
languages

= Use dynamic programming: Let D(/, ) indicate whether

7.1
%O—»OP‘O—>£—>%

there is a common string starting at i in g1 and j in g

©



Mar 21: Colour Day

Problem author: Jannik Olbrich

Problem
Given two regular expressions a; and «p without nesting or Kleene-star, find a string in the
languages’ intersection (or determine that there is none)

= Build DAGs g1 and g» representing all strings in the (m)(Y | €)(c)(Ymc | c)(M | y)
languages

= m
= Use dynamic programming: Let D(/, ) indicate whether v ?
c
there is a common string starting at 7 in g1 and j in g m < c
»%@7@
Y M( Y

)

©)

= Note that the average degree in the graphs is constant



Mar 21: Colour Day

Problem author: Jannik Olbrich

Problem
Given two regular expressions a; and «p without nesting or Kleene-star, find a string in the
languages’ intersection (or determine that there is none)

= Build DAGs g1 and g» representing all strings in the (m)(Y | €)(c)(Ymc | c)(M | y)
languages

= m
= Use dynamic programming: Let D(/, ) indicate whether v ?
c
there is a common string starting at 7 in g1 and j in g m < c
—O—C0__O0——0O—
= Note that the average degree in the graphs is constant v, & - y

= Therefore, the time complexity is O(N - M), where N Q
and M are the number of nodes in the DAGs



Apr 20: Easter

Problem author: David Stangl

T
B correct
51 M wrong-answer | |
B timelimit
run-error
[ | ndi
Al pending |
3 |- -
2 |- -
1 |- -
0 Il Il Il Il Il
0 50 100 150 200 250

300



Apr 20: Easter

Problem author: David Stang|

Problem
You are given a route consisting of n stops in a fixed order, each with a travel time d from the

previous stop and a time window [s, €] during which you have to visit it. Additionally, there are m
constraints indicating that the time between visiting stop a and stop b must be at most /. Find valid

times to visit the stops, or determine that it is impossible.



Apr 20: Easter

Problem author: David Stang|

Problem

You are given a route consisting of n stops in a fixed order, each with a travel time d from the
previous stop and a time window [s, €] during which you have to visit it. Additionally, there are m
constraints indicating that the time between visiting stop a and stop b must be at most /. Find valid
times to visit the stops, or determine that it is impossible.

Solution

= Start with the solution that visits every stop as early as possible.



Apr 20: Easter

Problem author: David Stang|

Problem

You are given a route consisting of n stops in a fixed order, each with a travel time d from the
previous stop and a time window [s, €] during which you have to visit it. Additionally, there are m
constraints indicating that the time between visiting stop a and stop b must be at most /. Find valid
times to visit the stops, or determine that it is impossible.

Solution
= Start with the solution that visits every stop as early as possible.

= For each stop from 1 to n, select a fixed time by delaying it as much as possible while keeping

within the time windows of it and later stops.



Apr 20: Easter

Problem author: David Stang|

Problem

You are given a route consisting of n stops in a fixed order, each with a travel time d from the
previous stop and a time window [s, €] during which you have to visit it. Additionally, there are m
constraints indicating that the time between visiting stop a and stop b must be at most /. Find valid
times to visit the stops, or determine that it is impossible.

Solution
= Start with the solution that visits every stop as early as possible.

= For each stop from 1 to n, select a fixed time by delaying it as much as possible while keeping
within the time windows of it and later stops.
= After fixing the time for a stop a, all constraints that limit the time taken between a and a later

stop b can be translated into adjustments of the time window of b.



Apr 20: Easter

Problem author: David Stang|

Problem

You are given a route consisting of n stops in a fixed order, each with a travel time d from the

previous stop and a time window [s, €] during which you have to visit it. Additionally, there are m
constraints indicating that the time between visiting stop a and stop b must be at most /. Find valid

times to visit the stops, or determine that it is impossible.

Solution

Start with the solution that visits every stop as early as possible.

For each stop from 1 to n, select a fixed time by delaying it as much as possible while keeping
within the time windows of it and later stops.

After fixing the time for a stop a, all constraints that limit the time taken between a and a later
stop b can be translated into adjustments of the time window of b.

If any time ends up outside the stops time window then there is no solution.



Apr 20: Easter

Problem author: David Stang|

Problem

You are given a route consisting of n stops in a fixed order, each with a travel time d from the
previous stop and a time window [s, €] during which you have to visit it. Additionally, there are m
constraints indicating that the time between visiting stop a and stop b must be at most /. Find valid

times to visit the stops, or determine that it is impossible.

Implementation in O((n + m) log n)
= For each stop, keep the maximum total delay before reaching it in a data structure (segment tree,

std: :set, etc.).



Apr 20: Easter

Problem author: David Stang|

Problem

You are given a route consisting of n stops in a fixed order, each with a travel time d from the
previous stop and a time window [s, €] during which you have to visit it. Additionally, there are m
constraints indicating that the time between visiting stop a and stop b must be at most /. Find valid

times to visit the stops, or determine that it is impossible.

Implementation in O((n + m) log n)
= For each stop, keep the maximum total delay before reaching it in a data structure (segment tree,

std: :set, etc.).
= When fixing a stop a



Apr 20: Easter

Problem author: David Stang|

Problem

You are given a route consisting of n stops in a fixed order, each with a travel time d from the
previous stop and a time window [s, €] during which you have to visit it. Additionally, there are m
constraints indicating that the time between visiting stop a and stop b must be at most /. Find valid

times to visit the stops, or determine that it is impossible.

Implementation in O((n + m) log n)
= For each stop, keep the maximum total delay before reaching it in a data structure (segment tree,

std: :set, etc.).

= When fixing a stop a
= Select the minimum total delay from the data structure to determine how much to delay visiting a.



Apr 20: Easter

Problem author: David Stang|

Problem

You are given a route consisting of n stops in a fixed order, each with a travel time d from the
previous stop and a time window [s, €] during which you have to visit it. Additionally, there are m
constraints indicating that the time between visiting stop a and stop b must be at most /. Find valid

times to visit the stops, or determine that it is impossible.

Implementation in O((n + m) log n)
= For each stop, keep the maximum total delay before reaching it in a data structure (segment tree,

std: :set, etc.).

= When fixing a stop a
= Select the minimum total delay from the data structure to determine how much to delay visiting a.
= Remove the entry for a from the data structure.



Apr 20: Easter

Problem author: David Stang|

Problem

You are given a route consisting of n stops in a fixed order, each with a travel time d from the
previous stop and a time window [s, €] during which you have to visit it. Additionally, there are m
constraints indicating that the time between visiting stop a and stop b must be at most /. Find valid

times to visit the stops, or determine that it is impossible.

Implementation in O((n + m) log n)
= For each stop, keep the maximum total delay before reaching it in a data structure (segment tree,

std: :set, etc.).

= When fixing a stop a
= Select the minimum total delay from the data structure to determine how much to delay visiting a.
= Remove the entry for a from the data structure.

= When incorporating constraints into time windows of stops, update the stops entries in the data

structure accordingly.



Apr 20: Easter

Problem author: David Stang|

Problem

You are given a route consisting of n stops in a fixed order, each with a travel time d from the
previous stop and a time window [s, €] during which you have to visit it. Additionally, there are m
constraints indicating that the time between visiting stop a and stop b must be at most /. Find valid
times to visit the stops, or determine that it is impossible.

Alternative Solution
The problem can also be translated into a shortest path problem solvable with Dijkstra’s algorithm.
Due to the nature of the graph it can even be solved in O(n+ m).



Jul 5: Dependence Day

Problem author: Christopher Weyand

[ | correct
Bl wrong-answer
2| B timelimit
run-error
B pending
15
10 -
5 |-
0 4-..1J -.

0 50 100 150 200 250 300



Jul 5: Dependence Day

Problem author: Christopher Weyand

Problem

Given n intervals that represent table reservations and m intervals that represent waiter shifts. At
each point in time, when there are a active reservations and b active shifts, then each of those b
waiters is responsible for at most [a/b] tables. For each shift, output the maximum number of tables

that the waiter is responsible for at some point in time during their shift.



Jul 5: Dependence Day

Problem author: Christopher Weyand

Problem

Given n intervals that represent table reservations and m intervals that represent waiter shifts. At
each point in time, when there are a active reservations and b active shifts, then each of those b
waiters is responsible for at most [a/b] tables. For each shift, output the maximum number of tables

that the waiter is responsible for at some point in time during their shift.

Solution 1
= Process times when a reservation or shift starts or ends in sorted order while maintaining the
current number of active shifts and occupied tables.



Jul 5: Dependence Day

Problem author: Christopher Weyand

Problem

Given n intervals that represent table reservations and m intervals that represent waiter shifts. At
each point in time, when there are a active reservations and b active shifts, then each of those b
waiters is responsible for at most [a/b] tables. For each shift, output the maximum number of tables

that the waiter is responsible for at some point in time during their shift.

Solution 1
= Process times when a reservation or shift starts or ends in sorted order while maintaining the

current number of active shifts and occupied tables.

= Compute tables per waiter for each point in time. We call this /oad.



Jul 5: Dependence Day

Problem author: Christopher Weyand

Problem

Given n intervals that represent table reservations and m intervals that represent waiter shifts. At
each point in time, when there are a active reservations and b active shifts, then each of those b
waiters is responsible for at most [a/b] tables. For each shift, output the maximum number of tables

that the waiter is responsible for at some point in time during their shift.

Solution 1
= Process times when a reservation or shift starts or ends in sorted order while maintaining the
current number of active shifts and occupied tables.

= Compute tables per waiter for each point in time. We call this /oad.

= Maintain the previous loads in a stack (the most recent on top).



Jul 5: Dependence Day

Problem author: Christopher Weyand

Problem

Given n intervals that represent table reservations and m intervals that represent waiter shifts. At
each point in time, when there are a active reservations and b active shifts, then each of those b
waiters is responsible for at most [a/b] tables. For each shift, output the maximum number of tables

that the waiter is responsible for at some point in time during their shift.

Solution 1

= Process times when a reservation or shift starts or ends in sorted order while maintaining the
current number of active shifts and occupied tables.

= Compute tables per waiter for each point in time. We call this /oad.
= Maintain the previous loads in a stack (the most recent on top).

= Before the current load is pushed onto the stack, pop smaller loads from the top.



Jul 5: Dependence Day

Problem author: Christopher Weyand

Problem

Given n intervals that represent table reservations and m intervals that represent waiter shifts. At
each point in time, when there are a active reservations and b active shifts, then each of those b
waiters is responsible for at most [a/b] tables. For each shift, output the maximum number of tables

that the waiter is responsible for at some point in time during their shift.

Solution 1

= Process times when a reservation or shift starts or ends in sorted order while maintaining the
current number of active shifts and occupied tables.

= Compute tables per waiter for each point in time. We call this /oad.
= Maintain the previous loads in a stack (the most recent on top).
= Before the current load is pushed onto the stack, pop smaller loads from the top.

= Thus the stack will be ordered ascending by load (from top to bottom).



Jul 5: Dependence Day

Problem author: Christopher Weyand

Problem

Given n intervals that represent table reservations and m intervals that represent waiter shifts. At
each point in time, when there are a active reservations and b active shifts, then each of those b
waiters is responsible for at most [a/b] tables. For each shift, output the maximum number of tables

that the waiter is responsible for at some point in time during their shift.

Solution 1

= Process times when a reservation or shift starts or ends in sorted order while maintaining the
current number of active shifts and occupied tables.

= Compute tables per waiter for each point in time. We call this /oad.

= Maintain the previous loads in a stack (the most recent on top).

= Before the current load is pushed onto the stack, pop smaller loads from the top.
= Thus the stack will be ordered ascending by load (from top to bottom).

= If a shift ends, query the maximum load since the start of the shift via binary search on the stack.



Jul 5: Dependence Day

Problem author: Christopher Weyand

Problem

Given n intervals that represent table reservations and m intervals that represent waiter shifts. At
each point in time, when there are a active reservations and b active shifts, then each of those b
waiters is responsible for at most [a/b] tables. For each shift, output the maximum number of tables
that the waiter is responsible for at some point in time during their shift.

Solution 1

= Process times when a reservation or shift starts or ends in sorted order while maintaining the
current number of active shifts and occupied tables.

= Compute tables per waiter for each point in time. We call this /oad.

= Maintain the previous loads in a stack (the most recent on top).

= Before the current load is pushed onto the stack, pop smaller loads from the top.

= Thus the stack will be ordered ascending by load (from top to bottom).

= If a shift ends, query the maximum load since the start of the shift via binary search on the stack.

= Runtime O((n + m)log(n + m)).



Jul 5: Dependence Day

Problem author: Christopher Weyand

Problem

Given n intervals that represent table reservations and m intervals that represent waiter shifts. At
each point in time, when there are a active reservations and b active shifts, then each of those b
waiters is responsible for at most [a/b] tables. For each shift, output the maximum number of tables

that the waiter is responsible for at some point in time during their shift.

Solution 2

= Do coordinate compression on all time points.



Jul 5: Dependence Day

Problem author: Christopher Weyand

Problem

Given n intervals that represent table reservations and m intervals that represent waiter shifts. At
each point in time, when there are a active reservations and b active shifts, then each of those b
waiters is responsible for at most [a/b] tables. For each shift, output the maximum number of tables

that the waiter is responsible for at some point in time during their shift.

Solution 2
= Do coordinate compression on all time points.

= Compute the load at each time like in Solution 1.



Jul 5: Dependence Day

Problem author: Christopher Weyand

Problem

Given n intervals that represent table reservations and m intervals that represent waiter shifts. At
each point in time, when there are a active reservations and b active shifts, then each of those b
waiters is responsible for at most [a/b] tables. For each shift, output the maximum number of tables

that the waiter is responsible for at some point in time during their shift.

Solution 2
= Do coordinate compression on all time points.
= Compute the load at each time like in Solution 1.

= From the loads, build any data structure that supports fast range-maximum queries. E.g.

Segment Tree or Sparse Table.



Jul 5: Dependence Day

Problem author: Christopher Weyand

Problem

Given n intervals that represent table reservations and m intervals that represent waiter shifts. At
each point in time, when there are a active reservations and b active shifts, then each of those b
waiters is responsible for at most [a/b] tables. For each shift, output the maximum number of tables
that the waiter is responsible for at some point in time during their shift.

Solution 2

Do coordinate compression on all time points.
Compute the load at each time like in Solution 1.

From the loads, build any data structure that supports fast range-maximum queries. E.g.

Segment Tree or Sparse Table.
Compute the result for each shift by querying the data structure.



Jul 5: Dependence Day

Problem author: Christopher Weyand

Problem

Given n intervals that represent table reservations and m intervals that represent waiter shifts. At
each point in time, when there are a active reservations and b active shifts, then each of those b
waiters is responsible for at most [a/b] tables. For each shift, output the maximum number of tables
that the waiter is responsible for at some point in time during their shift.

Solution 2

Do coordinate compression on all time points.
Compute the load at each time like in Solution 1.

From the loads, build any data structure that supports fast range-maximum queries. E.g.

Segment Tree or Sparse Table.
Compute the result for each shift by querying the data structure.
Runtime O((n + m) log(n + m)).



Jul 25: Sysadmin Day

Problem author: Paul Wild

14 [ | correct
M wrong-answer
12 B timelimit | |
Tun-error
B pending
10 |- |

0 50 100 150 200 250 300



Jul 25: Sysadmin Day

Problem author: Paul Wild

Problem
= Print an image consisting of pixels in up to eight colours using a CMYK printer.
= Toners are available in cyan, magenta, yellow and black.
= White, red, green and blue pixels can be achieved using subtractive colour mixing.

= Given the amount and per-pixel cost of each toner, minimize the total cost.



Jul 25: Sysadmin Day

Problem author: Paul Wild

Problem
= Print an image consisting of pixels in up to eight colours using a CMYK printer.
= Toners are available in cyan, magenta, yellow and black.
= White, red, green and blue pixels can be achieved using subtractive colour mixing.

= Given the amount and per-pixel cost of each toner, minimize the total cost.

Solution
= Each colour except for black can be printed in a unique way.
= Print all of these in a first pass and record how much toner of each type is left.
= |n a second pass, greedily choose the cheapest option for each black pixel.

= Running time: O(h- w)



Jul 30: Friendship Day

Problem author: Jannik Olbrich

B correct
14+ B wrong-answer
B timelimit
run-error
12
B pending
10 -
8 |-
6 |-
4 -
2 |-
0

0 50 100 150 200 250 300



Jul 30: Friendship Day

Problem author: Jannik Olbrich

Problem
Given a Graph, map each vertex to a line such that two lines intersect iff the corresponding vertices

are neighbours

Solution

= Two lines intersect iff they are not parallel



Jul 30: Friendship Day

Problem author: Jannik Olbrich

Problem
Given a Graph, map each vertex to a line such that two lines intersect iff the corresponding vertices

are neighbours

Solution
= Two lines intersect iff they are not parallel

= The line of a vertex v must be parallel to the line of every u that is not a neighbour of v



Jul 30: Friendship Day

Problem author: Jannik Olbrich

Problem
Given a Graph, map each vertex to a line such that two lines intersect iff the corresponding vertices

are neighbours
Solution
= Two lines intersect iff they are not parallel
= The line of a vertex v must be parallel to the line of every u that is not a neighbour of v

= This is possible iff the complement of the graph is a disjoint union of cliques



Jul 30: Friendship Day

Problem author: Jannik Olbrich

Problem
Given a Graph, map each vertex to a line such that two lines intersect iff the corresponding vertices
are neighbours
Solution
= Two lines intersect iff they are not parallel
= The line of a vertex v must be parallel to the line of every u that is not a neighbour of v
= This is possible iff the complement of the graph is a disjoint union of cliques

= But the complement graph has way too many edges. ..



Jul 30: Friendship Day

Problem author: Jannik Olbrich

Problem

Given a Graph, map each vertex to a line such that two lines intersect iff the corresponding vertices

are neighbours

Solution

Two lines intersect iff they are not parallel

The line of a vertex v must be parallel to the line of every u that is not a neighbour of v
This is possible iff the complement of the graph is a disjoint union of cliques

But the complement graph has way too many edges. . .

Use a DSU data structure to maintain the cliques: Loop over the vertices that are the
representative element of their set, and union each with all sets that are not adjacent to this
vertex.



Jul 30: Friendship Day

Problem author: Jannik Olbrich

Problem

Given a Graph, map each vertex to a line such that two lines intersect iff the corresponding vertices

are neighbours

Solution

Two lines intersect iff they are not parallel

The line of a vertex v must be parallel to the line of every u that is not a neighbour of v
This is possible iff the complement of the graph is a disjoint union of cliques

But the complement graph has way too many edges. . .

Use a DSU data structure to maintain the cliques: Loop over the vertices that are the
representative element of their set, and union each with all sets that are not adjacent to this
vertex.

Now we just need to ensure that the set of edges exactly matches the set of edges between the
DSU-sets



Jul 30: Friendship Day

Problem author: Jannik Olbrich

Problem

Given a Graph, map each vertex to a line such that two lines intersect iff the corresponding vertices

are neighbours

Solution

Two lines intersect iff they are not parallel

The line of a vertex v must be parallel to the line of every u that is not a neighbour of v
This is possible iff the complement of the graph is a disjoint union of cliques

But the complement graph has way too many edges. . .

Use a DSU data structure to maintain the cliques: Loop over the vertices that are the
representative element of their set, and union each with all sets that are not adjacent to this
vertex.

Now we just need to ensure that the set of edges exactly matches the set of edges between the
DSU-sets

Time complexity: O(n+ mlog™ n)



Nov 14: Domino Day

Problem author: Lucas Alber

14 [ | correct
M wrong-answer
12 B timelimit | |
Tun-error
B pending
10 |- |

0 50 100 150 200 250 300



Nov 14: Domino Day

Problem author: Lucas Alber

Problem

Given 2" colors, compute a sequence of colors, such that all permutations of [1,...,2"] that are
obtainable by swapping at inner nodes of an implicit binary tree are contained as subsequence.



Nov 14: Domino Day

Problem author: Lucas Alber

Problem
Given 2" colors, compute a sequence of colors, such that all permutations of [1,...,2"] that are
obtainable by swapping at inner nodes of an implicit binary tree are contained as subsequence.

Observation
= n=-n+ 1: The new colors never mix with the old colors using the described permutations.
= \We can reuse the same solution and obtain a shortest sequence B for the new colors by adding 2"
to the current sequence A.

= To allow for the colors to appear in any order, the resulting sequence has to have the form ABA.



Nov 14: Domino Day

Problem author: Lucas Alber

Problem
Given 2" colors, compute a sequence of colors, such that all permutations of [1,...,2"] that are
obtainable by swapping at inner nodes of an implicit binary tree are contained as subsequence.

Observation
= n=-n+ 1: The new colors never mix with the old colors using the described permutations.
= \We can reuse the same solution and obtain a shortest sequence B for the new colors by adding 2"
to the current sequence A.

= To allow for the colors to appear in any order, the resulting sequence has to have the form ABA.

Solution
= Start with i = 0,s = [1].
= Obtain the next sequence as s * (s +2') * s and set i = i + 1.

= Repeat until i = n.



Nov 27: Thanksgiving

Problem author: Christopher Weyand

25 | [ | correct -
B wrong-answer
timelimit
run-error
20 - B pending n

15— .

10— R 8

uiil !71m | I

|
150 200 250 300

(=4



Nov 27: Thanksgiving

Problem author: Christopher Weyand

Problem

Given a graph with one outgoing edge per node. How many nodes are reachable from node 1?



Nov 27: Thanksgiving

Problem author: Christopher Weyand

Problem

Given a graph with one outgoing edge per node. How many nodes are reachable from node 1?

Solution

= Follow the edges starting from node 1.



Nov 27: Thanksgiving

Problem author: Christopher Weyand

Problem

Given a graph with one outgoing edge per node. How many nodes are reachable from node 1?

Solution
= Follow the edges starting from node 1.

= Mark all visited nodes.



Nov 27: Thanksgiving

Problem author: Christopher Weyand

Problem

Given a graph with one outgoing edge per node. How many nodes are reachable from node 1?

Solution
= Follow the edges starting from node 1.
= Mark all visited nodes.

= Stop once you encounter a node that is already marked (cycle).



Nov 27: Thanksgiving

Problem author: Christopher Weyand

Problem

Given a graph with one outgoing edge per node. How many nodes are reachable from node 1?

Solution
= Follow the edges starting from node 1.
= Mark all visited nodes.
= Stop once you encounter a node that is already marked (cycle).

= Count how many nodes are marked in the end.



Dec 1: Advent

Problem author: Wendy Yi

50

100

150

200

B correct

Bl wrong-answer

B timelimit
run-error

B pending

250

300



Dec 1: Advent

Problem author: Wendy Yi

Problem

Given n chocolate pieces of k types, arrange them such that no two pieces of the same type are next
to each other.



Dec 1: Advent

Problem author: Wendy Yi

Problem
Given n chocolate pieces of k types, arrange them such that no two pieces of the same type are next

to each other.

Observation

n

= This is impossible if there are more than [7] pieces of the same type, otherwise possible.



Dec 1: Advent

Problem author: Wendy Yi

Problem
Given n chocolate pieces of k types, arrange them such that no two pieces of the same type are next

to each other.

Observation

n

= This is impossible if there are more than [7] pieces of the same type, otherwise possible.

Solution
= Sort the types in decreasing order.
= Starting with the most common type, fill every other day with a piece.

= After reaching the end, repeat the process, starting with the second day.




Dec 1: Advent

Problem author: Wendy Yi

Problem
Given n chocolate pieces of k types, arrange them such that no two pieces of the same type are next

to each other.

Observation

n

= This is impossible if there are more than [7] pieces of the same type, otherwise possible.

Solution
= Sort the types in decreasing order.
= Starting with the most common type, fill every other day with a piece.

= After reaching the end, repeat the process, starting with the second day.




Dec 1: Advent

Problem author: Wendy Yi

Problem
Given n chocolate pieces of k types, arrange them such that no two pieces of the same type are next

to each other.

Observation

n

= This is impossible if there are more than [7] pieces of the same type, otherwise possible.

Solution
= Sort the types in decreasing order.
= Starting with the most common type, fill every other day with a piece.

= After reaching the end, repeat the process, starting with the second day.




Dec 1: Advent

Problem author: Wendy Yi

Problem
Given n chocolate pieces of k types, arrange them such that no two pieces of the same type are next

to each other.

Observation

n

= This is impossible if there are more than [7] pieces of the same type, otherwise possible.

Solution
= Sort the types in decreasing order.
= Starting with the most common type, fill every other day with a piece.

= After reaching the end, repeat the process, starting with the second day.




Dec 1: Advent

Problem author: Wendy Yi

Problem
Given n chocolate pieces of k types, arrange them such that no two pieces of the same type are next

to each other.

Observation

n

= This is impossible if there are more than [7] pieces of the same type, otherwise possible.

Solution
= Sort the types in decreasing order.
= Starting with the most common type, fill every other day with a piece.

= After reaching the end, repeat the process, starting with the second day.




Dec 1: Advent
Problem author: Wendy Yi

Problem
Given n chocolate pieces of k types, arrange them such that no two pieces of the same type are next

to each other.

Observation

n

= This is impossible if there are more than [7] pieces of the same type, otherwise possible.

Solution
= Sort the types in decreasing order.
= Starting with the most common type, fill every other day with a piece.

= After reaching the end, repeat the process, starting with the second day.




Dec 1: Advent
Problem author: Wendy Yi

Problem
Given n chocolate pieces of k types, arrange them such that no two pieces of the same type are next

to each other.

Observation

n

= This is impossible if there are more than [7] pieces of the same type, otherwise possible.

Solution
= Sort the types in decreasing order.
= Starting with the most common type, fill every other day with a piece.

= After reaching the end, repeat the process, starting with the second day.




Dec 1: Advent
Problem author: Wendy Yi

Problem
Given n chocolate pieces of k types, arrange them such that no two pieces of the same type are next

to each other.

Observation

n

= This is impossible if there are more than [7] pieces of the same type, otherwise possible.

Solution
= Sort the types in decreasing order.
= Starting with the most common type, fill every other day with a piece.

= After reaching the end, repeat the process, starting with the second day.




Dec 1: Advent
Problem author: Wendy Yi

Problem
Given n chocolate pieces of k types, arrange them such that no two pieces of the same type are next

to each other.

Observation

n

= This is impossible if there are more than [7] pieces of the same type, otherwise possible.

Solution
= Sort the types in decreasing order.
= Starting with the most common type, fill every other day with a piece.

= After reaching the end, repeat the process, starting with the second day.

Running time: O(nlog(n))



Dec 1: Advent

Problem author: Wendy Yi

Problem
Given n chocolate pieces of k types, arrange them such that no two pieces of the same type are next

to each other.

Observation

= This is impossible if there are more than [4] pieces of the same type, otherwise possible.

Alternative solution

= Fill each day with a piece of currently most common type that is allowed to use (i.e, not used
yesterday).

= Keep track of number of pieces per type and current maximum using a priority queue.

= Running time: O(nlog(n))



Dec 31: New Year's Eve

Problem author: Christopher Weyand

[ ] correct
B wrong-answer
40 | B timelimit i
run-error
B pending
30 o
g | *
10 ¢ | g
|
0 | | ‘ - | I
0 50 100 200 250

300



Dec 31: New Year’s Eve
Problem author: Christopher Weyand

Problem
You are planning n trips that each cost 100 Euro. Bahncard X gives X% discount on all trips. You
can buy Bahncard 25, 50, or 100 for a, b, ¢ Euro, respectively. Should you buy a Bahncard, and if so,

which one?



Dec 31: New Year’s Eve
Problem author: Christopher Weyand

Problem

You are planning n trips that each cost 100 Euro. Bahncard X gives X% discount on all trips. You
can buy Bahncard 25, 50, or 100 for a, b, ¢ Euro, respectively. Should you buy a Bahncard, and if so,
which one?

Total Costs
= No Bahncard: 100n



Dec 31: New Year’s Eve
Problem author: Christopher Weyand

Problem

You are planning n trips that each cost 100 Euro. Bahncard X gives X% discount on all trips. You
can buy Bahncard 25, 50, or 100 for a, b, ¢ Euro, respectively. Should you buy a Bahncard, and if so,
which one?

Total Costs

= No Bahncard: 100n
= Bahncard 25: 75n + a



Dec 31: New Year’s Eve
Problem author: Christopher Weyand

Problem

You are planning n trips that each cost 100 Euro. Bahncard X gives X% discount on all trips. You
can buy Bahncard 25, 50, or 100 for a, b, ¢ Euro, respectively. Should you buy a Bahncard, and if so,
which one?

Total Costs
= No Bahncard: 100n
= Bahncard 25: 75n+ a
= Bahncard 50: 50n + b



Dec 31: New Year’s Eve
Problem author: Christopher Weyand

Problem
You are planning n trips that each cost 100 Euro. Bahncard X gives X% discount on all trips. You
can buy Bahncard 25, 50, or 100 for a, b, ¢ Euro, respectively. Should you buy a Bahncard, and if so,
which one?
Total Costs

= No Bahncard: 100n

= Bahncard 25: 75n+ a

= Bahncard 50: 50n + b

= Bahncard 100: ¢



Dec 31: New Year’s Eve
Problem author: Christopher Weyand

Problem
You are planning n trips that each cost 100 Euro. Bahncard X gives X% discount on all trips. You
can buy Bahncard 25, 50, or 100 for a, b, ¢ Euro, respectively. Should you buy a Bahncard, and if so,
which one?
Total Costs

= No Bahncard: 100n

= Bahncard 25: 75n+ a

= Bahncard 50: 50n + b

= Bahncard 100: ¢



Dec 31: New Year’s Eve
Problem author: Christopher Weyand

Problem
You are planning n trips that each cost 100 Euro. Bahncard X gives X% discount on all trips. You
can buy Bahncard 25, 50, or 100 for a, b, ¢ Euro, respectively. Should you buy a Bahncard, and if so,
which one?
Total Costs

= No Bahncard: 100n

= Bahncard 25: 75n+ a

= Bahncard 50: 50n + b

= Bahncard 100: ¢

Solution

Compute the cost for each option and print the cheapest.



Jury work

= 652 secret test cases (= 50 per problem)



Jury work
= 652 secret test cases (= 50 per problem)

= 119 jury solutions



Jury work
= 652 secret test cases (= 50 per problem)
= 119 jury solutions

= The minimum number of lines the jury needed to solve all problems is
1+41+4+110+14+48+4+39+37+6+134+2+2+5+2 =320

On average 24.6 lines per problem



Jury work

= 652 secret test cases (= 50 per problem)
= 119 jury solutions

= The minimum number of lines the jury needed to solve all problems is
1+41+4+110+14+48+4+39+37+6+134+2+2+5+2 =320

On average 24.6 lines per problem

= The minimum number of characters the jury needed to solve all problems is
102 + 1421 + 4397 + 336 + 1191 + 1259 + 929 + 431 + 692 + 119 + 124 4 207 + 166

On average 875 characters per problem



